Table of Contents

Flash Programming Guide

Chapter 1. Introduction to Flash Programming

Flash RAM and On-board Programming., 1-2
Flash Programming CoNnCepts.o oottt e e e 1-3
Flash Programming Tasks.o 1-4
Embedded Programming Algorithms for Flash Devices 1-5
Intel® Algorithms. 1-5
Intel® Automated Byte/Word Programming Algorithm. 1-5
Intel® Byte/Word Programming Flowchart. 1-6
Intel® Block Erase Algorithm 1-8
AMD® Algorithms 1-9
The AMD® Embedded Program Algorithm 1-9
The AMD® Embedded Erase Algorithm 1-12
The Advantages and Limitations of On-board Programming.............. 1-13
The Advantages of On-board Programming............. 1-13
Limitations of On-board Programming:. 1-15

Chapter 2. Design For On-board Programming

On Board Programmingt 2-2
OBP: A Different Approach to Test Development.......... 2-2

Planning for Flash On-board Programming 2-3
On-board Programming Design Considerations. 2-3
Board Design Recommendations 2-4

Disable Bi-directional Signals to Prevent Bus Conflicts 2-4
Disable Input Signals to Prevent Backdriving Damage 2-4

Provide Access to All I/O Signals. 2-5
Use System Power Supply Levels and Document Operational V.
2-5
Establish Direct Access to BSDL Signals 2-6
Provide Data Protection and Disabling Information. 2-6
What Test Developers Need to KNOwW 2-7
What is a Flash Programming Test? 2-7
Data Sources and Board Topologies Effect OBP 2-8
Board Topologies for On-board Programming 2-9
Individual Flash Devices Connected by Separate Data Busses 2-
9

A Series of Flash Devices Connected to a Single Data Bus 2-10

Flash Programming Guide Table of Contents-1 I>

Multiple Flash Devices Connected to a Single Large Data Bus 2-

11
Parallel Flash Programming With HP Throughput Multiplier 2-12
Creating a Sample Design Document. 2-12

Chapter 3. Flash70 Digital Tests

Whatis a Flash Digital Test? e 3-2

The Series 3 Flash Compiler. 3-2
Data Interpretation i 3-2
Automatic SegmentRemoval 3-3

Flash70 . .. 3-3
The Flash70 Algorithm 3-4
Faster Tests with the Flash70 Algorithm 3-4
Obtaining 12MHz Speed on 6MHz cards 3-7
Hardware Waits 3-10

Data Blockso 3-11

Chapter 4. Data Sources for Flash Programming

OV VI W . . o 4-1
Data Blocks and OBP 4-2
Using Data Blocks for Flash Programming 4-2
Data Block Example Using a Motorola S-record. 4-3
Data Block Example Using an Intel Hexademical Record. .. 4-3
Formatted Records 4-4
Motorola S-ReCOrds. 4-4
Record Typeso 4-5
Start Record 4-5
DataRecord 4-6
EndRecord. 4-6
Motorola S-Record Example. 4-7
Structure of a Motorola S-Record 4-8
Intel Hexadecimal Records 4-9
Record Types oo 4-10
DataRecord 4-11
EndRecord. 4-11
Extended Segment Address Record 4-11
Start Segment Address Record 4-11
Extended Linear Address Record. 4-12

Flash Programming Guide Table of Contents-2 I>

Start Linear Address Record 4-12

Intel Hex Record Example 4-12
Extended Segment Record Example........... 4-14

General Data Block Usage 4-16
Testing Single-Byte Devices with Data Records. 4-19
Testing multibyte Devices with Data Records. 4-20

Chapter 5. VCL Syntax for Flash OBP

OV IV W . . o e 5-1
VCL Syntax in Flash Digital Tests. i 5-2
The Structure of a VCL Testo e 5-2
Declaration section., 5-2
Timing Section e 5-2
Vector Definition section 5-3
Vector Execution section 5-3
Placing Flash VCL StatementsinaTest. 5-3
VCL Statements in the Declaration Section ofa Test 5-3
Example Declaration Section for a Flash Test. 5-4
.Description of Declaration Statements 5-5
flash. 5-5
generate statictest 5-5
family. 5-6
dynamic. 5-6
Flash VCL Statements in the Definition Section of a Test.... 5-6
Example Definition Section of a Flash Test. 5-7
Description of Definition Statements 5-8
file ... 5-8
file statementoption 5-8
Flash VCL Statements in the Execution Section of a Test ... 5-8
Description of Flash VCL Execution Statements.. 5-10
segment. 5-10
repeat 5-11
executeanddrive 5-11
NexXt 5-12
Syntax to Inhibit Flash70 Algorithm 5-13
Turning off the Flash70 Algorithm 5-13
Turning off All Flash Features 5-13
Turning off Limited Addressing. 5-13
Turning off SegmentRemoval 5-13
Turning off DataRemoval. 5-14

Flash Programming Guide Table of Contents-3 I>

File Statement Options 5-14

Default 5-15
"reuse" Data Modifier 5-16
"unused" Data Modifier. 5-16
"user" Data Modifier 5-17
28f160 "u8:program” VCL Example. 5-18

Chapter 6. Generating Flash Digital Tests

OV VI W . . ot 6-2
Flash Test Development Tasks i e 6-3
Section One: Flash OBP Programming Steps.ot 6-5
Locating Flash PDL and Test Directories. 6-7

/hp3070/libraries/supplemental/flash. 6-7

/hp3070/boards/board_directory/digital. 6-7

OBP Production Programming Task Flow. 6-8

Flash Programming TestFlow 6-9

Using HP 3070 Libraries to Develop Flash Tests 6-10

Part Description Library Structure. 6-10

PDL'sFeatures. 6-11

Library Structure 6-11

IPG, PDLs, and Flash Test Library Models. 6-11
Section Two: Steps to Developing Flash Digital Tests. 6-13

Step 1: Configuring the board 'config’ file 6-13

Step 2: Verifying IPG Test Generation 6-14

Step 3: Running HP Test Consultant. 6-17

Power Voltage Considerations 6-20

Step 4: Modifying the 'testplan’. 6-21
Modifying the "testplan” for Panel or Throughput Multiplier Topologies

6-22

Other "testplan” considerations 6-23
Section Three: Flash Tests and Existing Fixtures 6-24
Set Up A Flash Test Suite to Validate Your Test 6-28

Chapter 7. Validating Tests for Production

OV VI BW . . e e 7-2
Task Flow for Testing OBP Libraries 7-2
Setup Process Task Flow 7-3

Flash Programming Guide Table of Contents-4 I>

Using IPG Generated Flash Tests to SetupOBP 7-4

The'id test. 7-5
The'blank test. 7-6
Evaluating Device Data With Pushbutton Debug. .. 7-7

Displaying Accurate Addresses by Adding Extra Control Lines 7-9
Displaying Accurate Addresses With the New Display Group 7-10

The'cre' test. 7-12
The'verify' test. 7-13
The’erase’test i 7-14
Verifying an Erased Device With the 'blank’ test 7-15
The’program’test 7-15
Troubleshooting a Failing "program” Test 7-16
Expanding the Test to the Full Memory Size of the Device 7-17
Obtaining Speed Improvements with Flash70 7-18
Notes about Debug with Dynamic Vectors 7-19
Notes About Debugging With Flash70.. 7-19
Verifying that Programmed Data is Correct. 7-21
Correcting Reversed Data Bits. 7-22
Address Misalignment.. 7-23
Data Addressing for Data Records Larger Than 8 bits 7-24
Addressing Data Modifiers. 7-25

Chapter 8. Series and Parallel Programming

Series Flash Topology Cluster Test Programming Model 8-2
Parallel Topology Cluster Test Programming Model 8-5
Performinga Parallel Test 8-5

Add New Data Blocks to Reference Separate Files for Each Device 8-6

<l Flash Programming Guide Table of Contents-5 I>

A excicaro

NOTICE
This manual is provided “as is” and is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein, nor for direct, indirect,
general, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright © 1985-1998, Hewlett-Packard Company.

The XWD i/o and GIF output routines are derived from Jef Poskanzer’'s PBMplus package:
© Copyright by Jef Poskanzer 1989

Printed in U.S.A.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. Thgy are
delivered and licensed as “commercial computer software” as defined in DFARS 252.227-7013
(Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), ds a
“commercial item” as defined in FAR 2.101(a), or as “Restricted computer software” as defingd in
FAR 52.227-19 (Jun 1987) (or any equivalent agency regulation or contract clause), whicheyer is
applicable. You have only those rights provided for such Software and Documentation by the
applicable FAR or DFARS clause or the HP standard software agreement for the product involved.

Insulation Rating for Wires Connected to the System

Use only external wiring with insulation rated for the maximum voltage (Vrms, Vpk or Vdc) and
temperature to which the wire may be subjected in a fault condition.

Example: The system is connected to a source whose output is set at 50Vrms. The source could be
set for as high as 300Vrms, intentionally or unintentionally. Therefore, the external wining
connected between this source and the system must be rated for 300Vrms.

HEWLETT®
(éﬁ] PACKARD
NOTICE

Emer gency Shutdown

Emergency
Shutdown
Button

The Emergency Shutdown switch is the large red button located at the lower |eft corner on the
front of the testhead. It turns off all ac power to the testhead, and is equivalent to turning off the
main circuit breaker on the rear of the pod. Press the Emergency Shutdown switch if you ever need
to power down the testhead and its associated equipment in an emergency situation.

CAUTION: DO NOT use the Emergency Shutdown switch as a substitute for correct power-down
procedures; i.e., executing the “testhead power off’ command.

Frequent use of the Emergency Shutdown switch can cause premature failure of the main cirguit
breaker on the rear of the support bay.

To restore power after pressing the Emergency Shutdown switch, turn on the main circuit breaker
on the rear of the pod.

A excicaro

WARRANTY

1. HP warrants HP hardware, accessories and supplies against defects in materials and workmanship for the period of oneyear. If HP
receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be
defective. Replacement products may be either new or like-new.

2. HP warrants that HP software will not fail to execute its programming instructions, for the period of one year, due to defectsin
material or workmanship when properly installed and used. If HP receives notice of defects during the warranty period, HP will replace
software media which does not execute its programming instructions due to such defects.

3. HP does not warrant that the operation of HP products will be uninterrupted or error free. If HP isunable, within a reasonable time,
to repair or replace any product to a condition as warranted, customer will be entitled to arefund of the purchase price upon prompt
return of the product to HP.

4. HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or on the date of installation if installed by HP. If customer schedules or delays
HP installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or cdibration, (b) software, interfacing,
parts or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside the published environmental
specifications for the product, or (e) improper site preparation or maintenance.

7. TOTHE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, ISEXPRESSED OR IMPLIED AND HP SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND
FITNESS FOR A PARTICULAR PURPOSE.

8. HP will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that is the subject of the claim, and for damages for bodily injury or deeth, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective HP Product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S
SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT
OR DATA), OR OTHER DAMAGE WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN
THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY
AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT
TO YOU.

USER SAFETY SYMBOLS

These symbols are used on labels on various places on the testhead.

A®

/>1-— '

_fe

F_ WY

WARNING - Do not operate the testhead if you can see
this symbol. It means that hazards exist because the
safety shroud is not installed. These hazards include
pinched fingers from pulling down a test fixture and
electrical shock if HP Performance Port is installed.

WARNING - Keep your hands away from the indicated
areas of the testhead to avoid pinched fingers when
rotating the testhead.

WARNING - Do not rotate the testhead past 65 degrees
with afixtureinstalled, or the fixture could fall off the
testhead, causing persona injury.

A excicaro

SAFETY SYMBOLS

Instruction symbol affixed to Frame or chassis ground terminal
A product. Indicates that the user must /47 -- typically connectsto the
refer to the manual for specific or equipment’s metal frame.
WARNING and CAUTION L
information to avoid personal injury
or damage to the product.
| Indicates the field wiring terminal ~. Alternating current (ac).
= that must be connected to earth
O ground before operating the ==~ Direct current (dc).
@ equipment - protects against
electrical shock in case of fault. L Indicates dangerous voltage.

WARNING Calls attention to a procedure, CAUTION Calls attention to a procedure,
practice, or condition that could practice, or condition that could
result in bodily injury or death. cause damage to equipment or

permanent loss of data.

HEWLETT®
(ﬁﬁ] PACKARD
WARNINGS

The following general safety precautions must be observed during all phases of oper ation,
service, and repair of this product. Failureto comply with these precautions or with specific
war nings elsewherein this manual violates safety standar ds of design, manufacture, and
intended use of this product. Hewlett-Packard Company assumes no liability for the
Customer’s failure to comply with these requirements.

Ground the Equipment: For Safety Class | equipment (equipment having a protective earth
terminal), an uninterruptable safety earth ground must be provided from the main power sourceto
the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or
fumes.

For continued protection against fire, replace the line fuse(s) only with the fuse(s) of the same
voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields.
Procedures involving the removal of covers or shields are for use by service-trained personnel
only. Under certain conditions, dangerous voltages may exist even with the equipment switched
off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield
removal unlessyou are qualified to do so.

DO NOT operate damaged equipmentWhenever it is possible that the safety protection
features built into this product have been impaired, either through physical damage, excessive
moisture, or any other reason, REMOVE POWER and do not use the product until safe operation
can be verified by service-trained personnel. If necessary, return the product to Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety features are maintained.

Do not service or adjust alone: Do not attempt internal service or adjustment unless another
person, capable of rendering first aid and resuscitation, is present.

Do not substitute parts or modify equipment:Because of the danger of introducing additiona
hazards, do not install substitute parts or perform any unauthorized modification to the product.
Return the product to a Hewl ett-Packard Sales and Service Office for service and repair to ensure
that safety features are maintained.

/) HEWLETT® Chapter 1
[oacicaro Introduction to Flash Programming

Rev. A

The information in this chapter provides an overview of flash RAM
programming concepts. Read this chapter if you are unfamiliar with
using automatic test equipment to program flash devices.

This chapter describes:
¢ Flash Programming Concepts, on page 1-3
¢ Flash Programming Tasks, on page 1-4

¢ Embedded Programming Algorithms for Flash Devices,
on page 1-5

¢ The Advantages and Limitations of On-board
Programming, on page 1-13

Index Introduction to Flash Programming 1-1

Flash Programming Guide

11Flash RAM and On-board Programming

Index

Flash RAM is a high-density, read-write, non-volatile memory
source used in many electronics applications, such as digital
cameras, modems, automotive engines, personal computers, and
cellular phones. Unlike ROM, Flash memory is non-volétile,
meaning data bits are retained even after removing the power supply.
Additionally, flash memory is electrically erasable and re-writable
In-system.

The utilization of flash memory devicesby el ectronics manufacturers
ison therise. By the year 2000, the market for flash RAM is
estimated to grow to $10 billion. For many manufacturers, flash
RAM is becoming a standard element of circuit board design.
Attributes such as in-system programmability and non-volatility
make flash memory products aflexible, low cost, reliable memory
solution for an increasingly diverse range of electronic products.

The value of using flash RAM over other programmable logic
devicesisthat data can be electricaly erased and re-programmed in-
system. When choosing a manufacturing process for writing data to
flash memory devices, project management teams should consider
flash related manufacturing issues that impact product profitability.
Inventory control procedures, the availability of third party vendors
who can meet just-in-time goas, and the cost of acquiring special
toolsif Small Outline Packages (SOPs) are in the board design are
important considerations. These issues add to the complexity of
designing boards that include flash technology.

With the miniaturization of flash devices, traditional flash
programming methods have become slow and expensive to
implement. Manufacturers that program flash devices on PROM
programmers often encounter damage rates as high as two percent
because of the extra handling steps required to install the smaller,
more fragile devices. Automatic test equipment (ATE) can be
effectively utilized for flash on-board programming (OBP) to reduce
costs and improve test development speed.

HP 3070 systems with Flash70 software can used for on-board
programming of flash memory devices. This guide contains
information about the procedures, tasks, and syntax required to
perform flash programming with HP 3070 test systems. If flash
programming is a new technology for you, then you should read this
chapter, if you are familiar with flash technology, read about design
for on-board programming requirementsin Chapter 2, “Design For
On-board Programming.”

Introduction to Flash Programming 1-2

Flash Programming Guide

1.2Flash Programming Concepts

Index

You should be aware of the following concepts for programming
flash memory devices:

¢ Flash memory is non-volatile.
¢ FHash memory is electrically erasable and writable.

¢ Non-blank flash devices must be erased prior to
programming.

¢ Newer flash devices contain automated program verification
procedures which reduce manual programming time and
effort.

¢ Standardized libraries and algorithms can be used for
programming flash devices.

Flash memory is anon-volétile, electrically erasable and writable
memory originally developed by Intelg Corporation. Automatic
programming modes in newer flash devices mean that flash
algorithms are smpler and faster to implement. Like EPROM, flash
memory devices must be erased before programming. HP Flash70
software manages flash programming activitiesat in circuit test, such
as device erasure, verification and programming.

Programing methods for flash RAM vary based on part
specifications and manufacturing requirements. CFI, the Common
Flash Interface specification, enables the use of software agorithms
for entire families of devices. CFl allows standardized software
driversto identify and use avariety of flash products because device
identification data is embedded into the chip. Device identification
data defines memory size, byte/word configuration, block
configuration, and the voltages and timing information necessary for
programming the device.

A variety of algorithmsfor programming flash devices exist. Intelg
and Advanced Micro Devices (AMDg) have developed the
algorithms most commonly used for flash RAM programming. Other
manufacturers generally follow these industry leaders.

Automatic on-chip verification methods simplify the flash
programming process and result in more reliable programming.
Newer flash devices have internal automatic program verification
processes. These devices manage data verification procedures by

Introduction to Flash Programming 1-3

Flash Programming Guide

automatically verifying the threshold levels of the data stored in the
data cells. Thisincreases testing efficiency because programmers no
longer need to create separate threshold algorithms for every version
of aflash device.

1.3Flash Programming Tasks

Whether you are programming flash on-board with ATE or by some
other method, the flash device programming process remains the
same. In most test production environments, there are three steps:

1.

2.

Device I dentification

|dentify the flash device by the manufacturer identification
number.

The flash programming mechanism reads the manufacturer
identification number from the device to ensure the correct
deviceisready for programming.

Device Erasuref
Verify that the deviceis blank. If not, perform device erasure.

Flash devices must be blank before programming. New parts
are shipped blank, but previously programmed parts must be
erased prior to programming. Erasing a part changes all
memory spaces on the flash device to aone state "1". Thisis
necessary because the "program” command cannot program
zero statesto one.

NOTE Ensuring that flash devices are blank before programming is one of the most
i overlooked steps for test devel opers.

3.

Index

Device Programming

Program the flash device with valid information stored in a hex
data record file.

Flash devices are typically programmed with hex data records
that follow either the Intelg, Hex or Motorolag S-Record
formats. Other formats exist, but they are not considered
industry standards.

Introduction to Flash Programming 1-4

Flash Programming Guide

14Embedded Programming Algorithms for Flash Devices

14.1Intelg Algorithms

When 12.0 V flash memories were first introduced, cumbersome
programming sequences were required to program and erase flash
devices. To simplify the process, system software designers
embedded flash programming algorithms onto newer flash devices.
Embedded programming algorithms initialize, write, and read
programming sequences automatically. In the HP 3070 environment,
embedded al gorithms are activated by the appropriate sequence of
Vector Control Language (VCL) execute statements.

The two leading manufacturers of flash devices, Intelg and AMDg, ,
use similar embedded programming algorithms. Flow charts that
describe the write sequence algorithms follow. The procedures
required to program a single byte of memory are indicated by the
blocksin the diagram.

Intel g has developed algorithms designed to work with Intel g flash
device architecture. Intelg flash devices contain a Command User
Interface (CUI), which serves as the interface between the
microprocessor and the internal operation of aflash device.
Command sequences written to the CUI initiate embedded
algorithms on flash devices. Valid command sequences cause an on-
chip Write State Machine (WSM) to execute the algorithms and
timing required to perform operations such as Block Erase and Byte/
Word Program. The Write State Machine on the flash device
manages block erase, program and lock-bit configuration functions.

142 Intelg Automated Byte/Word Programming Algorithm

Index

Flash device programming can be executed with the Intel g, Byte/
Word Program command. This involves writing two command
sequences to the CUI: the Program Setup command (40H) and the
address and data to be programmed. The Write State Machine then
programs the data at specified address locations and verifies that
programming was successful. When programmed, specified bitsin
an address |ocation are changed to "0". The following flowchart
illustrates the sequence of events that occur when the Byte/Word
Program algorithm is executed.

Introduction to Flash Programming 1-5

Flash Programming Guide

1.4.2.1 Intelg Byte/Word Programming Flowchart

START

P Write 40Hex, Address

v

Write Data and
Address

v

Read Status Register

Yes
Yes More Data to be
Programmed?
No
Y

Full Status Check —

Byte/Word Program
Complete

NOTE: This procedure is
cumulative. Itis
performed at the end of
a segment, after all data
has been programmed

Index

1. Write40H, Address: 40H isawrite command for byte/word

program setup. This command instructsthe CUI to initialize the
programming algorithm.

. Write Addressand Data: A second write command specifies

the address and data to be written. The Write State Machine
then controls program and program verify operations. Datais
written to the cell and validated.

. Read Satus Register: The status register isread by writing

the Read Satus Register command. The status register
determines when the program operation is completed
successfully. After writing this command to the CUI, all
subsequent read operations output data from the status register
until another command is written to the CUI.

The contents of the status register are latched on the falling
edge of the OE # or the first edge of CE #, whichever occurs
last in the read cycle.

. Verify Program Completion: The status register is used to

check the Write State Machine Status pin ("SR.7") for the
following conditions:

o |If SR.7="0", the flash device is busy.
e IfSR.7="1", theflash device program operation is
complete and ready to receive more data.

. Repeat steps 1 through 4, if there is more data.

. Perform Full Satus Check: A Full Status Check is performed

after completing the device program operation.

Introduction to Flash Programming 1-6

Flash Programming Guide

Read Status Register Data

No Voltage Range Error

Programming Voltage OK?

Yes

Device Protect Status:
Unlock?
(SR1=07?)

No Device Protect Error

Yes

Programming Successful? Byte Program Error

(SR.4=0?)

Yes

Program Suspend Status

(SR2-07?) No Program Suspended

P

Yes

rite State Machine Ready?

(SR7 = 1?) NoW{ Write State Machine Busy

Yes

v

< Program Operation Successful>

Index

lintelg Full Status Check Algorithm

In the HP 3070 environment, afull status check
reads the following status register pinsto validate
the programming algorithm:

SR.3 = Programming Voltage Status

*If SR.3="1", low programming voltageis
detected and the program operation aborts.

«|f the SR.3 bit equals " 0", the programming
operation is successful.

SR.1 = Device Protect Status

*|f SR.1="1", amaster lock-bit, block lock-bit
and/or RP# lock is detected and the programming
operation is aborted.

*If SR.1="0", thisrepresents an unlocked bit.
SR.4 = Program and Set L ock-Bit Status

*If SR.4="1", an error in the Byte/Word
programming occurred.

*If SR.4="0", the programming operation
completed successfully:

SR.2 = Program Suspend Satus

*If SR.2 ="1", the programming operation is
suspended.

*If SR.2="0", the programming operation
continues:

SR.7 = Write Sate M achine Satus

*|f SR.7="1", the Write State Machine is ready
to program more data

*|f SR.7="0", the Write State Machine is busy.

Introduction to Flash Programming 1-7

Flash Programming Guide

The status register check is cumulative, which meansthat if any program operation fails, an error
occurs and the program operation is aborted. Thus, if 100,000 data locations have been
programmed with one failing cell, the results will be reflected in the data register.

143 Intelg Block Erase Algorithm

Any non-blank flash device must be erased before

it can be programmed. The Intelg Block Erase START
Algorithm performs and verifies device erasure. i
Block erasureisinitiated by atwo-cycle command ~eue Command 20H

sequence. To erase a block, issue the Erase Setup (Block Erase Setup),
command (20H) and the Erase Confirm command
(DOH) to the Command User Interface, along with

the address of the block to be erased. Performing a (BIOCIlNE":'taeSg%F(; .
block erase sets all bits within the block to "1". Command),
Only asingle address block at atime can be erased. Block Address

The flow chart illustrates how the Intel g Block
Erase Algorithm works.

Yes Read Status Register
1. A two-cycle command sequence initiates the
block erase procedure. First, write "20H", the
Erase Setup command, to the CUI aong with @
the address within the block to be erased.
Yes
2. Next, write "DOH", the Erase Confirm
command, to the CUI, along with the address
within the block to be erased. The erase
operation does not begin until an Erase g
Confirm command has been issued. After this Full Status Check
command isissued, the Write State Machine (optional)
executes the following events within the
device G&5D)

» Programs all bits within the block to "0".

* Verifiesthat all bitswithin the block are
programmed.

» Erasesall bitswithin the block by changing to "1".
* Verifiesthat al bits with the block are erased.

3. The Write State Machine Status pin, SR.7, is checked to determine if erasure is completed.

Index Introduction to Flash Programming 1-8

Flash Programming Guide

o [If SR.7="1", the Write State Machine is ready and erasure is compl eted.
o If SR.7="0", the Write State Machine is busy.

4. If more address blocks are to be erased, repeat steps 1 to 3 until erase operation is completed.

15AMDg Algorithms

For AMDg compatible flash devices, the command register serves as the interface between aflash
device and the microprocessor. An interna state machine uses the command register input to
control device erasure and programming. Read and write device bus operations are initiated by
writing commands to the command register. Device programming and erasure occur when the
appropriate command sequence is written to the command register. For example, the program
command sequence initiates the Embedded Program algorithm, which automatically performs
device programming and verification functions. The erase command sequence initiates the
Embedded Erase algorithm, which automatically preprograms the array and executes the erase
operation. In order to write acommand sequence for programming data or erasing sector addresses,
the system must drive WE# (the Write Enable pin) and CE# (the Chip Enable pin) to low, and OE#
(the Output Enable pin) to high. The Embedded Program algorithm and the Embedded Erase
algorithm are presented in the following sections.

151 The AMDg Embedded Program Algorithm

AMD g compatible flash devices are programmed using the program command sequence to initiate
the Embedded Program agorithm. The Embedded Program algorithm causes the device to
automatically perform programming and program verification functions. To determine if the
program operation is completed, the system reads the Data Polling bit (DQ7) or checks the Ready/
Busy (RY/BY#) status pin. If the RY/BY# pin equals"1" or DQ7 contains the data programmed to
DQ7, programming has been completed. The device is then ready to accept another command or
read data.

Programming is a four-bus-cycle operation initiated by the byte program command sequence. The
corresponding bus-cycle operations are listed below:

¢ First bus-cycle: unlock write cycle

¢ Second bus-cycle: unlock write cycle

¢ Third bus-cycle: program set-up command

¢ Fourth bus-cycle: write to memory address location and write data at specified address
Addresses are latched on the falling edge of WE # or CE #, whichever happenslast in the bus cycle.

Dataislatched on therising edge of WE # or CE #, whichever happensfirst in the bus cycle. The
rising edge of WE # or CE # begins the programming operation

Index Introduction to Flash Programming 1-9

Embedded
Program
algorithm

Index

<

Flash Programming Guide

AMD Programming
Algorithm

START

Write Program
Command
Sequence

Data Porr.
Verify Embedded
Programming
Algorithm
Completed

Yes

Program Anothe
Address?

No
v

Yesp

Increment
Address

Programming
Complete

Bus Cycle Address Ppata
First 555 AA
Second 2AA 55
Third 555 A0
Fourth o%ems o

Program Command

Sequence

Write 555/AA

v

Write 2AA/55

—EUnIock cycle

v

Write 555/A0

Program setup

command

v

Write Program
Address,
Write Program Data

Define memory
Address to be

Programmed,
Data

I
I
I
I
I
I
I
I
I
I
I
I
—EUnIock cycle |
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure1-1 AMDg Programming Algorithm

Introduction to Flash Programming 1-10

Flash Programming Guide

The AMDg Programming Algorithm flowchart shows the following
sequence of commands and events.

1. Thewriting of unlock commands such as 5555H/AAH,
2AAAH/55H and the program command 5555H/AOH is part of
the command sequence that sets up the AMDg, flash device for
programming. The address and data to be programmed are
written to the device. Pin "DQ7" goes to the opposite of its
expected state while programming.

2. The automatic programming operation is completed when the
Data Polling on pin "DQ7" is equal to the data written to this
bit.

The RY/BY# pin indicates to the host system that the embedded
algorithms are either in progress or completed. If the RY/BY #
pin read islow, the device is busy with the program operation. If
the output is high, the device is ready to accept additional read/
write operations.

3. After asector is completely programmed, the addressis
incremented and new datais programmed.

Index Introduction to Flash Programming 1-11

Flash Programming Guide

152 The AMDg Embedded Erase Algorithm

Embedded
Erase
algorithm

Index

AMD® Erase Algorithm

START

Write Erase Command

Sequence

Data Poll

Erasure Completed

No

Chip Erase—

Erase Sector or
Erase Chip?

Sector Erassl

Chip Erase
Command
Sequence

START

Sector Erase

Command
Sequence

!

START

Write 555H/AAH

!

}

Write 555H/AAH

Write 2AAH/55H

I

!

Write 2AAH/55H

Write 555H/80H

!

s

Write 555H/80H

I

Write 555H/AAH

Write 555H/AAH

}

!

Write 2AAH/55H

Write 2AAH/55H

v

Write 555H/10H

| Write Sector Address/

30H

Erase Additional
Sectors?

Introduction to Flash Programming 1-12

Figure 1-2. AMDg Erase Algorithm

Flash Programming Guide

The erase command sequenceis used to erase AMDg, compatible
flash devices. You can erase a single sector, multiple sectors, or the
entire device. There are two common erase al gorithms used for
AMDyg, flash devices, Chip Erase, and Sector Erase. Each algorithm
uses asix bus cycle operation. The following sequence of commands
and events occurs with this algorithm:

¢

The erase sequences are initiated with two "unlock™ bus
cycles. The unlock cycles provide data protection against
inadvertent writes.

A "set-up" command is written to the command register.
Two more "unlock™ write cycles occur.

Chip Erase: the chip erase command is written which
triggers the Embedded Erase algorithm; or

Sector Erase: the sector erase command consists of the
address of the sector to be erased followed by the sector erase
command 30H. This command can be repeated to erase
multiple sectors.

The Embedded Erase agorithm automatically pre-programs
the entire memory or programs the sector and verifies that an
al zero data pattern exists prior to erasure.

16 The Advantages and Limitations of On-board Programming

HP 3070 Series 3 hardware and software allows you to program flash
memory devices at in-circuit test. There are several advantages and
limitations to consider when determining whether to use on-board
programming to program flash devices.

1.6.1 The Advantages of On-board Programming

Index

‘/Cost reduction opportunities exist:

* ECOsare simpler to implement because flash
programming can take aslittle as aday to set up. Once set
up, code can be changed to accommodate new versionsin
minutes.

* Thereisno need for off-line programming. Thiscan save
between $.40 and $.60 per part.

Introduction to Flash Programming 1-13

Index

Flash Programming Guide

* When the programming time of in-circuit tests (ICTs) is
less than allotted throughput time for board test, the cost
of ICT on-board programming isfree.

‘/ Reduced handling can decrease the percentage of
damaged parts:

» Flash devices are soldered to the PCB using surface
mount assembly equipment. Reduced manual handling of
components minimizes the potential for damaged or
misaligned component pins.

* Additional handling equipment is not required for Small
Outline Packages (SOPs).

* Automated component handling results in fewer bent
component |eads.

» Tapeand reel mediacan be utilized for flash memory
component installation.

‘/ Hardware costs can decrease:

* Thereisno need to add flash memory socketsto the test
boards.

» Combining flash programming with the in-circuit test
process decreases total manufacturing expense.

‘/ Inventory control costs will decrease significantly:

* On-board programming of flash memory eliminates the
need to assign additional part numbers to programmed
devices.

* Noindividual device labeling is necessary because
automated test equipment reads the part identification off
the device.

* Noinventory storage isrequired for programmed flash
devices.

Introduction to Flash Programming 1-14

Flash Programming Guide

1.6.2 Limitations of On-board Programming:

X Des gning for OBP can increase hardware costs
dightly:

* Additional circuitry that can three-state outputs of any
components connected to flash devices is recommended
to prevent damage to parts from excessive backdriving.

» Additional circuitry is recommended to prevent signa
conflicts and bus contention.

» A full compliment of test land pads are needed for ATE
programming unless dower methods such as JTAG Test
Access Ports are used.

X Test evaluation methods may need revision:

» Manufacturing line test throughput time increases by the
amount of time it takes to program flash devices. Flash
programming time varies from five to sixty seconds.

X Board test devel opers assume amore significant role
in the early stages of projects.

» Since functionality is added to boards by programming
flash devices at test time, board designers should plan for
the testing process by communicating closely with test
developers. This modifies the quality assurance role
traditionally performed by test devel opers to more of a
developmental role in the board development cycle.

» Faulty ICT program tests cannot be skipped without
manufacturing process modifications.

Index Introduction to Flash Programming 1-15

Flash Programming Guide

Index Introduction to Flash Programming 1-16

ﬁ HEWLETT® _ Chapter 2
LA cacicaro Design For On-board Programming

Rev. A

This chapter requires an understanding of the flash programming
concepts described in:

¢ Chapter 1, “Introduction to Flash Programming”

This chapter describes:
¢ On Board Programming, on page 2-2.
¢ Planning for Flash On-board Programming, on page 2-3

¢ On-board Programming Design Considerations, on page
2-3.

¢ Board Design Recommendations, on page 2-4
¢ What Test Developers Need to Know, on page 2-7.
* Whatis a Flash Programming Test?, on page 2-7.

* Data Sources and Board Topologies Effect OBP, on
page 2-8.

* Board Topologies for On-board Programming, on
page 2-9.

* Creating a Sample Design Document, on page 2-12

Index Design For On-board Programming 2-1

Flash Programming Guide

210n Board Programming

On-board programming utilizes automated test equipment to
program flash memory devicesthat are installed on a printed circuit
board. HP 3070 system hardware and software can be used to
program flash devices on-board. Programming flash devices on-
board in the production phase of board test development involves
tasks almost identical to those currently utilized by HP 3070 test
developers. However there are additional design consideration that
should be incorporated into an effective on-board programming
strategy. After learning some on-board programming fundamentals,
programming flash devices in-circuit is no more complex than
developing tests for other devices.

To simplify flash test development, HP 3070 systems provide digital
libraries for many common flash devices. These digital libraries use
standard Vector Control Language (VCL). If an exact match for your
deviceisnot found in the library, it is easy to create a custom test.
Simply search the libraries for flash devices similar to thoseinstalled
on your test board and make minor modifications to the library test.
Then the standard flash library will work with the flash device under
test.

NOTE Although not required to perform flash programmiktgsh70 can be
utilized to dramatically increase the speed of flash programming.

211 OBP: A Different Approach to Test Development

Successful OBP requires a different approach to test development.
Traditionaly, the testing phase of the board development process has
played a quality assurance role in manufacturing. When

programming flash devices on-board, the testing phase assumes a
more significant rolein the developmental stages of projects. For
instance, software version control is managed by the test devel oper
and board designers need to ensure that the board meets the test
developers’ requirements for OBP. Also, functionality is added to
flash devices during production.

With on-board programming, design-for-testability should be
emphasized. For best results, board designers should work
collaboratively with test developers to incorporate testing conditions
into the board design. Implementing OBP of flash memory with a
design-for-testability approach can ultimately increase the
profitability of most board design projects.

Index Design For On-board Programming 2-2

Flash Programming Guide

22 Planning for Flash On-board Programming

Panning is essential for quickly and easily implementing flash
programming at in-circuit test time. Special design criteriafor OBP
should be added to the standard design criteria. It is necessary to plan
board designsthat allow the safe programming of devices and to
provide sufficient information about data structures and data sources
to the test programmers. To attain the maximum vaue from flash
technology, design teams should create boards that can be
programmed in-circuit, on-board, or by an in-circuit test, if required.

2.2.10n-board Programming Design Considerations

The following design conditions are recommended for flash on-
board programming:

¢ Adequate probeaccessto all flash device pinsis needed,
especialy if 16 bit datais used for OBP.

¢ Circuitry that prevents signal conflicts or bus contention
during OBP should be incorporated into the board design.

¢ Anon-board voltageregulator should be used to ensure that
Vppand V¢ voltages used at test development work within
the thresholds of in-system voltage specifications.

NOTE I naccurate programming can be caused by voltage differences between flash device
T V pp requirements and the on-board power supply. Provide flash device specifications
: to board designers so that this problem can be addressed in the board design process.

¢ Designing aboard so an on-board processor can program
flash memories does not guarantee that the board can be
programmed successfully in ICT.

If the flash device is being driven by another in-circuit
device, it isunlikely that the ATE will program the device
properly since the processor programs the part.

ICT usualy backdrives output from upstream devices to
perform cluster tests. The HP 3070 protects these devices
against excessive backdriving with the Safeguard Protection
feature. However, using the safeguard feature for flash OBP
slows the process down to an unacceptable speed. To

Index Design For On-board Programming 2-3

Flash Programming Guide

effectively program flash devices, the HP 3070 safeguard
feature must be turned off.

¢ The ability to three-state upstream devicesis essentia for
OBP. The only way to protect upstream devicesisto
incorporate three-stating mechanisms into the board design.

It takes between 2 and 45 seconds to program aflash device.
Some studies have shown that devices can typically
withstand backdriving for only a few milliseconds before
damage results. Therefore, it is necessary to turn off the
"safeguard" feature of the HP 3070 system. Since flash
programming cannot be achieved in an acceptable time with
safeguard on, three-stating devices on the board is the correct
solution.

2.2.2 Board Design Recommendations

2.2.2.1 Disable Bi-directional Signals to Prevent Bus Conflicts

For digital testing, the capability to disable other devices on the bi-
directional signals of the device under test is critical. The HP 3070

cannot program flash devices in-circuit unless all bi-directional pins

on the data bus are disabled. Therefore, an important element of OBP
design is the capability to quickly and easily disable the board’s bi-
directional signals with the automated test equipment. The best OBP
board design utilizes a single input that can disable all parts directly
accessing the memory to be programmed. This strategy enables more
error free programming results. If this is not possible, it is important
to supply test developers with disabling specifications for all ASICS
and custom devices.

2.2.2.2Disable Input Signals to Prevent Backdriving Damage

Newer devices are more resilient to overdriving damage than those
produced in earlier generations. Also, new HP 3070 programming
libraries release backdriving signals more frequently within the test
to limit backdriving time. However, board designers should provide
isolation of all I/O pins on the device to be programmed to protect
upstream devices from damage that might result from long periods of
backdriving activity.

Disabling can be accomplished by three-stating devices. There are

many methods to three-state devices for flash programming. Some of
the most commoBP three-stating methods follow:

Index Design For On-board Programming 2-4

Flash Programming Guide

¢ Design ASICswith fully three-statable outputs. This
eliminates the need for tests to overdrive the device’s signals.

¢ Use volatile FPGAs, which power-up in a three-state
condition.

¢ Add three-statable buffers to protect output. Commercial mpu
are often difficult to disable. If the test developer disables
mpu, the output signals are not likely to be three-stated along
with the bidirectional signals.

¢ Use HP Boundary-Scan Interconnect Plus to three-state
signals orBSDL compliant devices. HP Boundary-Scan
Interconnect Plus automatically disables all I/Os on the
device.

2.2.2.3Provide Access to All 1/0 Signals

Some board designs use only 8 bits of data on flash devices that can
be operated in 8 or 16 data bit mode. Since flash devices can be
programmed by word-wide methods, it is much more efficient to
retain access to all device signals for ICT. In 16-bit cases, if the
board design permits full access to all pins on the flash device,
programming time can be reduced by almost 50 percent.

2.2.2.4Use System Power Supply Levels and Document Operational V.

Index

Power and ground transient noise spikes are another source of OBP
power supply problems. Board designers must address power,
ground noise, and signal integrity issue®BP environments. Pin
drivers often route signals across long distances thratigh

equipment which adds capacitance and inductance to the
transmission line. By the time the programming voltage reaches the
flash device under test, the signal integrity can degrade.

Utilize in-system power supply levels to gain the most reliable OBP
results. This reduces the risk of inconsistent voltage applications,
because the automatic write mechanism of some flash devices
verifies the data content against thresholds relevant toghe V
levels. If the \&c level during programming is lower than it will be

in the final product, data bits which verified as high during program
verification may read below the high threshold during product
operation.

Design For On-board Programming 2-5

Flash Programming Guide

If thereis avoltage regulator present to generate V - during testing,
then discrepancies in power supply levels disappear. When 'V ¢
signas are provided directly from the HP 3070, the design team
should document the operational V ¢ level for the test team.

2.2.2.5 Establish Direct Access to BSDL Signals

Devicesthat are compliant with |EEE 1149.1 standards can take
advantage of Boundary-Scan technology to provide disabling.
Boundary-Scan automates the disabling process viaBSDL. Because
most testing and programming of programmable logic is performed
through the boundary-scan ports, having direct access to these
signas and providing chains to interconnect them enhances the
testability of the board. Designers need to supply accurate boundary-
scan description files that operate properly with the devices on the
board. The importance of Boundary-Scan for testing should be
emphasized in on-board programming design plans.

2.2.2.6 Provide Data Protection and Disabling Information

Index

Most flash devices have programmatic protection capabilities against
V pp Voltage so the board design does not need to be modified for
OBP. Some older flash devices have data protection features which
require that 12v be applied to address pins for erase and program
operations. However, if thetest program needsto apply 12 voltsto an
address line, buffers should be added to isolate V pp from the address
line to protect upstream devices from V pp damage. When using this
method, it isvery important that the designer provides information to
the manufacturing test team about how to disable access of the V ¢
address lines when the program protection voltages are in use.

Design For On-board Programming 2-6

Flash Programming Guide

23What Test Developers Need to Know

To generate successful flash programming tests, we recommend that
test devel opers establish the following goals:

¢ Prepare atesting specification document for the designers of
the board.

¢ Learn how to program devices with various types of data.
¢ Learnto verify that datais correctly programmed.

¢ Clear the data bus of all activity from other devices during
programming. Thisisthe most important element of the flash
testing process with ATE.

In digital tests, interference from other devices can result in
programming intermittence. Therefore, complete and easy
disabling of upstream devicesis essential for effective and
safe OBP.

NOTE When upstream devices interfere with the programming of flash devices, the
[programming test may not fail. The data being programmed, however, will be incorrect.
Adeguate disabling prevents this type of problem.

¢ Three-state all upstream devices which are exposed to
backdriving. Although the "safeguard” feature of the HP
3070 provides protection from backdriving, safeguard must
be turned off to achieve optimal programming times.

231 What is a Flash Programming Test?

Flash on-board programming tests are digital tests that use part
libraries to actually program data onto an in-circuit flash device.
Flash programming tests are smply digital "pin library" tests written
in VCL. Typically, IPG generates six flash library tests during test
development. The two testsrequired for flash OBP are "erase” and
"program” (see Flash Programming Tasks, on page 1-4).

Flash digital libraries contain information such asflash programming
voltages (Vpp), in-system voltages (Vcc), and pin assignments. The
PDL filesincluded in the HP3070 B.3.00 software point to digital

teststhat program the most common flash devices on the market. The
flash digital library models used for OBP testing are described more

Index Design For On-board Programming 2-7

Flash Programming Guide

completely in IPG, PDLs, and Flash Test Library Models, on page
6-11.

232 Data Sources and Board Topologies Effect OBP

Index

Choosing the best method to program flash devices in-circuit
depends on severd factors, including intended data sources and
board topologies. It isimportant to understand the data sources
provided and to make efficient use of them on various board
topologies. Because flash devices and board topologies differ from
project to project, knowledge of data structures and board topology is
avery important OBP consideration.

For programming flash memory devices, HP 3070 systems support
Intel @ Hex, Motorolag S-Records, and decimal data source formats.
Each flash device to be programmed requires a data source file.
Understanding how to interpret these data formats enables you to
compare the actual programmed data on a flash device to the
expected data results.

For effective on-board programming design, it is important to
understand the types of board topologies that enable faster
programming methods. We recommend that board designers prepare
documentation that defines the board topology and data source
structures. Test developers can then use this documentation to
develop effective test strategies.

Design For On-board Programming 2-8

Flash Programming Guide
2.3.3Board Topologies for On-board Programming

2.3.3.1 Individual Flash Devices Connected by Separate Data Busses

Test devel opers often work with boards that use separate data busses
for each on-board flash device. This type of flash test is easy to
implement because board designerstypically provide one datafile
for programming. With one datafile, the source usually matches the
bit width of the flash devices on-board.

A diagram of this scenario follows:

29f800
16bitdatabus & ;g E
mpu : _E
Addressbus = 16bit E CE2 Flash Control Pins
= flash E CE: Chip Enable
= device % WE: Write Enable
% ; OE 24 OE: OUtpUt Enable
\ oo

169 £l

Figure2-1 OBP on 16 bit board topol ogy

Index Design For On-board Programming 2-9

Flash Programming Guide

2.3.3.2 A Series of Flash Devices Connected to a Single Data Bus

16 bit data bus
®
mpu
Address bus

Sometimes boards have many flash devices connected to asingle
databus. Since dl parts utilize the same data nodes, it is necessary to
program the flash devices sequentially. With thistype of design, ATE
probes must have node access to the chip enable pinson all devices
connected to the data bus. This enables each flash device to disable
the others.

With this type of topology, the test program must ensure that the
inputs to the other flash memories are disabled. In the topology
depicted below, WE or OE lines are held in common. Each device
has an independent chip enable. This means disabling can be
automatically implemented by the HP 3070. The disable subroutine
of the program test disables the appropriate parts.

The topology depicted below represents a series of flash devices
connected by asingle data bus.:

29800
us

Seque(\\'\ a

Index

16

flash
device

WE 31

OE 24 Flash Control Pins
CE: Chip Enable
WE: Write Enable
OE: Output Enable

U9
16 bit

flash E cp 1 CcE U9

device

u10
16 bit

flash
device

* CE_U10
CE

U1l
16 bit

flash
device

o CE_ULL

Figure2-2 Multiple Devices and Single Data BusTopol ogy

Design For On-board Programming 2-10

Flash Programming Guide

2.3.3.3 Multiple Flash Devices Connected to a Single Large Data Bus

Some board designs connect multiple flash devices to one large data
bus. The example below shows a 64 bit mpu and four flash devices
connected to separate data busses. This design is especially good for
OBP, because disabling of other flash devicesis not necessary.
However, any periphera devices connected to the flash device data
bus must be disabled. Also, the HP 3070 is capable of programming
all devicesin paradle with asingle cluster test to improve overall
programming speed.

In thistype of design, when separate nodes must be asserted to three-
state upstream devices, these must be added to the program test.

A diagram of the topology follows:

Address bus EITE
16 hit % 16 hit 5 CE 22
DO-D15 : J'a.Sh £ WE31
: OVICCE OE24
-
. = FE— — — e
~16bit = qgenit E_ |
D16-D3LE flash E
£ device E
3 E
fuwo E
16bit = 16 bit ; — — —
D31-D47 = flash E — — — T
Z device E CE
3 E
S um E
agﬂ 16 bit ; 16 bit g _ — — ¢
_ mu\\'\—b\)SD m flash £ — — = 7 7
BA‘O\‘ 2 device ECE
3 E

Figure 2-3 Multiple Flash Devices on a Single Data Bus

Index Design For On-board Programming 2-11

Flash Programming Guide

2.3.3.4 Parallel Flash Programming With HP Throughput Multiplier

HP 3070 Throughput Multiplier is a software tool that can be used to
perform Flash OBP paralld programming of identical boards. HP

Throughput Multiplier allows you to program two or more boards of
the same type and executes flash tests simultaneously on each board.

A diagram of thistopology follows:

Module 2;: BoardX Module 3: BoardX

= Hl. 0= S
=11 51

L F W F

9mr(\'\(\(}v
, \e‘ooaxdpmg(
Y

Figure2-4 Flash OBP Parallell Programming Topol ogy

234 Creating a Sample Design Document

We recommend that board designers and test developers create a
flash programming design specification document. This document
should include information about the flash devicesto be
programmed, board topology, address buses, data buses, and
disabling information. An sample design document is shown next.

Index Design For On-board Programming 2-12

Flash Programming Guide

Flash Device Type: Part Number:

Design For On-board Programming 2-13

Flash Programming Guide

Index Design For On-board Programming 2-14

7/~ HEWLETT® ~ Chapter 3
A2 packaro Flash70 Digital Tests

Rev. A

This chapter describes:

¢ What is a Flash Digital Test?, on page 3-2
¢ The Series 3 Flash Compiler, on page 3-2
¢ Flash70, on page 3-3

¢ Data Blocks, on page 3-11

|

Index Flash70 Digital Tests 3-1

Flash Programming Guide

31What is a Flash Digital Test?

A flashtest isastandard VCL digital test that uses an externa data
source to program a flash device. Unlike standard digital testsin
which the data values are explicitly defined by internal vectors, flash
digital tests program unpredictable data values from an external file.
The externd file is a formatted data record which provides the data
the compiler usesto program the flash device. A programmer defined
data structure called a data block specifies the external data source
used to program the device. VCL statements within the data block
define the externa data file and how its datais interpreted. Dynamic
vectors extract data and address information from the specified data
file. The address and data are then applied to the device to be
programmed within a data cycle created by standard VCL vectors.
The compiler interprets the file and calcul ates the appropriate
address to be applied with each byte of data.

Another difference between a standard digital test and aflash
programming test is size. Flash tests are usually many times larger
than standard digital tests. To accommodate the large size of flash
device tests, flash datais programmed in smaller sections called
segments which the HP 3070 treats as multiple test files. Any size
datafile can be programmed by one digital test by using arepeat loop
that maximizes pin RAM, and directory and sequencer RAM usage
for programming.

32 The Series 3 Flash Compiler

3.2.1 Data Interpretation

Index

The Series 3 flash compiler is more efficient than earlier versions and
works with Motorolag S-Records, Intelg Hex records, and integer
data. Since most designers work with cross-compilers that generate
Motorolag S-Records or Intelg Hex records, many new Flash70
features are optimized for these types of formatted data files.

The compiler parses the data and address sections of the formatted
data records based on the definitions provided in the data block.
Motorolag and Intelg record types contain aseries of ASCII values
representing bytes of data. How the compiler interpretsthe datafrom
aformatted record depends on the cross-compiler used to generate
the files and the device or devices to be programmed. Severa user
definable options are available to manage and define variances in
data interpretation.

Flash70 Digital Tests 3-2

|

Flash Programming Guide

Options that can be defined within the data block include a step
modifier and aformat modifier. A step modifier isused to trandate
the address from the data file into an address that fits the pins of the
device under test, as well as the board topology. Some cross-
compilers and data file generators create data records in which the
address is not incremented by each byte, but by each 16 bits of data.
Thus, 16 or 32 bits of data are treated as one address |ocation, rather
than the expected single address per byte. The format modifier can be
used to handle non-byte addressing in Intel g Hex and Motorolag S-
Records.

3.22 Automatic Segment Removal

33Flash70

Index

When the number of repeat loops or programming sequencesis
larger than the data source available, the compiler interprets data
more efficiently. If the data is exhausted, the compiler does not
execute unnecessary segmentst. Segments must be programmed in
their entirety. Thus, when data runs out before a segment has been
completed, the compiler programs reverts to an end-of-data condition
and programs "harmless’ data, FF, to asingle location. By default,
thisis the highest address in the device. Since this may not be the
appropriate address for the data, the test programmer can define
information in the data block to select the appropriate address
location for the data to be programmed. Programming FF can result
IN many unnecessary programming sequences, increasing flash
programming execution time. If FF datais distributed throughout a
datafile, the Series 3 compiler automatically removes these bl ocks of
FF data. Several seconds may be saved by not programming this
redundant data.

Flash70 is an optional software product that improves flash
programming time. Flash70 features include:

¢ Faster programming speed with the Flash70 algorithm:
¢ New library modelsto simplify flash test development.

¢+ Comprehensive online documentation: the Flash
Programming Guide

1. Thismay result in improved test times, depending on the size of the data
source and the device to be programmed.

Flash70 Digital Tests 3-3

Flash Programming Guide

The Flash70 programming algorithm takes advantage of the new
Control XT card’s expanded memory. If you are not using Flash70,
segment size is limited by the vector RAM behind the pins, which
can never exceed 8k. With Flash70, segment size is determined by
sequence RAM whichis 1 MB on Control XT cards. Thislarger size
RAM increases the potential segment size for programming which
improves flash programming speed.

33.1 The Flash70 Algorithm

The Flash70 algorithm improves programming speeds for flash
devices. Significant improvementsin Flash70 test speed are the
result of decreased overhead for segment execution and more
efficient use of expanded ControlXT memory.

To obtain the benefits of Flash70, you must purchase and enable
Flash70 software. To enable the Flash70 algorithm, add the
statement "enable flash70" in the board "config" file and include the
keyword, "flash" in the VCL tests for your flash devices.

When Flash70 is used in combination with the flash compiler,
dynamic vectors use the Flash70 algorithm for programming
operations. This algorithm uses the faster, larger memory of the
control card for all the variable data pointers. The slower pin card
memory is used for data that doesn't need to be reloaded during the
test. Thus, fewer segments are required to program a device.

3.3.2 Faster Tests with the Flash70 Algorithm

NOTE

Index

It is not necessary to know the internal details the Flash70 algorithm to program flash
devices. Read this section if you want to learn why the Flash70 algorithm is faster.

Flash70 utilizes an algorithm that improves the speed of
programming flash devices. Thisimprovement isthe result of vector
expansion. Vector expansion differs from the standard flash
algorithm in the following way. With the standard flash compiler, pin
RAM is used to store the combinations of ones and zeros needed to
program data. Since pin RAM is only 8k, the time required to reload
data becomes detrimental to flash programming performance. For
example, a 35 pin address and data bus has 23° possible binary
combinations to hold address and datainformation. Potentially, up to
34 Gigabits of information are needed to program the device.
Theoretically, if the datafileis perfectly random, the pin RAM must

Flash70 Digital Tests 3-4

Flash Programming Guide

be reloaded 4,000 times to program all the combinations (34Gb/8k =
4,000 Pin RAM reloads).

The Flash70 algorithm eliminates the time consuming need to reload
pin RAM. Flash70 vector expansion divides the datainto more easily
managed chunks by programming eight to ten pinsat atime. The pin
RAM required to contain every combination for eight to ten pinsis
only 28 to 210 hits (i.e. 256 to 1024 combinations). Since the required
memory is less than the 8K of pin RAM available, programming a
device becomes a matter of loading the Pin RAM once with every
combination possible for the smaller sections, and then using
ControlXT Segquence RAM to organize the data.

The Flash70 algorithm expands one vector into a multiple vector
execution sequence. Some data records may require several vectors
to implement programming completely, since multiple vectors are
executed for one dynamic vector. The execution rate for the
subvectorsis 80ns per vector. In the example below, asingle 160ns
dynamic vector will become four 80ns vectors. The dynamic vector
completesits cycle in 320ns while all other vectors operate at the
user-selected vector cycle.

To better understand vector expansion, consider the following, drive
only, example:

Data to be Programmed:
Address_19 "000 0000 1010 1111 0101" Data_16 "1001 1100 0100 0010"
The Execution Statement:

Execut e Keep_control drive data Address_19 drive data Data _16

The execution statement above expands the address information to
multiple vectors. Keep_control specifiesthat the state of some of the
pins from the previous sector remains unchanged. Each vector cycle
changes only part of the data on the bus (between 8 to 10 bits). On
the final vector cycle, the flash device receives the complete record.

Flash70 creates afour vector execution sequence from the single data

record. In the example above, the execution sequence expandsin the
following order:

Index Flash70 Digital Tests 3-5

Index

Flash Programming Guide

Drive Vector 1:

Address_19 "000 0000 101k kkkk kkkk" Data_16 "kkkk kkkk kkkk kkkk"

Drive Vector 2:
Address_19 "kkk kkkk kkkB 1111 0101" Dat a_16 "kkkk kkkk kkkk kkkk"
Drive Vector 3: j

Address_19 "kkk kkkk kkkk kkkk kkkk" Data_16 "1001 1100 kkkk kkkk"
Drive Vector 4: -‘

Address_19 "kkk kkkk kkkk kkkk kkkk" Data_16 "kkkk kkkk 0100 0010"

Figure3-1 Flash70 Dynamic Vector Expansion

The Flash70 algorithm programs the entire device by transferring
data records section by section to the data busin the following order:

1. Drive Vector 1: 10 high order address bits.
2. Drive Vector 2: 9 low order address bits.
3. Drive Vector 3: 8 high order data bits.
4. Drive Vector 4: 8 low order data bits.

5. Onthefinal write, WE# is asserted to program the entire
address and data information to the flash device.

For example, WE# or OE# are offset from the expanded vector in
which they are active, proportional to the user vectors. Final control
lines are driven in the last vector to meet DUT requirements. Since
there are no receivesin this statement, the 6 MHz hybrid card receive
limitations are not encountered.

Data read sequences depend on the multiple vector algorithm to
create the vectors which comply with the 6 MHz hybrid card
limitations. All control lines are driven in the second address vector.
The DUT has at least one vector to settle its outputs before the
receive vector is active. If more than one receive vector is executed,
the only read receive is on the last vector.

Other notes concerning the Flash70 a gorithm follow:
¢ Thereceive delay should always be set to 100ns or less, when

using avector cycle of 160ns. The Flash70 compiler uses
offsets for the receive delay. If the delay setting is greater

Flash70 Digital Tests 3-6

Flash Programming Guide

than 100ns, offsets cannot be used. In this case, the expanded
vectors operate at the user defined vector speed.

¢ RAM behind the pinsis loaded with fixed, static data.

¢ Sequence RAM dynamically controls the sequence of the
data applied to pin RAM.

¢ The number of data and address pins on the data bus
determines the quantity of vectors expanded. This processis
controlled by the sequence RAM.

3.3.30btaining 12MHz Speed on 6MHz cards

Index

With Flash70, if you have double density 6 MHz hybrid cardsin your
system, it is possible to achieve additional improvement in
programming speed. Flash70 enables some users to program at rates
faster than the 160ns specification indicates. With good fixturing and
fast memory, 80ns vector cycle time may be achievable. Since vector
execution isvery fast in flash programming, the faster cycling can
Improve programming performance significantly.

The 6 Mhz hybrid cards are unable to drive signals to a device and
receive output islessthan 160ns. The new Series 3 flash libraries are
designed to drive and receive on different vectors to avoid violating
the 6Mhz hybrid card specifications. The Flash70 compiler allows up
to 80ns vector cycles when you override the board configuration to
optimize overall programming times, even on 6Mhz cards.

Flash70 Digital Tests 3-7

|

Receive: ﬁ

Drive: +

Flash Programming Guide

Address: < Addresses from Hex File: >

Data:

CE#

WE#

OE#

Vectors:

Data Read Status Program D3=0
Command Regl ster Command.: D7=1 D4=0

34567 8910111213141516171819202122
Figure3-2 Flash Library Vector Cycle

= —
I\)_

NOTE: Thisdiagram shows a standard programming sequence with the required device bus
I+ cycles. Observethe ICT drive and receive requirements. Note that the changes of inputs

do not coincide with datareceive vectors. This means that the test will never be required
to change driven data and received data on the same vector. Since thisis the case for
programming tests, using 80ns vector cycles on a6 Mhz system does not violate the
specifications. Thisiswhy Flash70 allows you to override the system configuration. If
you choose to override the system configuration on any test but the "program test", the
specification will be violated and the test cannot be expected to operate.

Index

The Flash70 algorithm can operate at up to 80ns vector cycles.
Improving programming speed is a matter of trial and error. The
flash programming libraries specify a vector cycling time that has
been proven in the HP lab environment. Thisvector time, however, is
not guaranteed, because the speed at which VCL tests can program
depends heavily on fixturing. Efficient fixturing can reduce the time
specified. The fastest vector cycle used cannot be less than 80ns.

To improve the speed of your flash programming, try these
procedures:

1. Enable Flash70 in the board configuration file and VCL test

Flash70 Digital Tests 3-8

|

NOTE

NOTE
MGy

Index

Flash Programming Guide

files.

» Enter "enable flash70" in the board "config" file.

» At the beginning of the Declaration section, enter the
"flash" statement in the "verify" and "program" test files
for the DUT.

2. Before attempting to maximize the speed, make sure the device
programs as expected based on the library definitions provided.

3. Inthe VCL test, reduce the vector cycle time to 80ns and the
receive delay to less than 80ns.

For example, in the "program" test for the Intel g 28f160, the
following VCL statements appear:

vector cycle 160ns
recei ve del ay 100ns

In this case, you would change the vector cycle to 80ns and the
receive delay to approximately 50ns.

The receive delay must always be less than the vector cycle time.

4. Compile and run the test on the device to be programmed.
¢ Either the flash device programs successfully, or
¢ If theflash device does not program successfully, increase the

vector cycle and receive delay times until it does. In many
cases, vector cycles can be faster than 160ns.

In rare cases, the vector cycle specified in the VCL test istoo fast for reliable
programming. If this occurs, the vector cycle time should be increased beyond the
library recommendation.

Flash70 Digital Tests 3-9

|

3.3.4Hardware Waits

Index

Flash Programming Guide

A wait suspends execution of a VCL test and waitsfor atrigger
before resuming. With the hardware wait, the triggering lines and
states must be set up at the beginning of the VCL test, and cannot be
changed during the test. During the wait, the drivers maintain their
current states, however, the DUT clock, if any, continues to run (see
Digital-3). Timed waits terminate at the end of a specified time.
Other waits terminate when the specified triggering states are
received.

Flash70 alows you to use hardware waits instead of homingloopsin
digital tests. Hardware waits are used on flash devices that provide a
READY lineto specify when acell is programmed. By using the
READY linein conjunction with the hardware wait, the need to poll
the deviceis eliminated. With no need to poll the device,
homingloops can be removed from the VCL test, reducing the
amount of directory RAM required by the test.

Because you cannot break during await, always set atest time at the
beginning of the digital test that employs hardware waits. Each
segment istreated like a separate test, so the test time applies to each
segment. Set the test time to .1 seconds for a segment size of 2048.
This allows 50 micro seconds per byte for programming.

Flash70 Digital Tests 3-10

Flash Programming Guide

Setting hardware waitsin VCL testsis easy because the statements
aready exist in test libraries. To set the hardware wait, comment out
the homingloop and uncomment the "wait" statement in the VCL test
as shown below:

I wait line STS
| wait term nated when STS is "1"

homi ngl oop 60000 tines I allow cell to program
execute Device_Ready exit if pass I Program Conpl et ed

end hom ngl oop

I execute Device_Ready wait

Should be changed to the following:
wait |ine STS

wait term nated when STSis "1"

I homi ngl oop 60000 tines ! allowcell to program
I execute Device_Ready exit if pass I Program Conpl et ed

I end homi ngl oop

execut e Devi ce_Ready wait

NOTE By making the above changes, flash programming speed should improve by
[approximately 15 percent.

34 Data Blocks

Index

A datablock enables a set of datato be defined in VCL and assigned
to agroup of pins. Data blocks are defined in the Vector Definition
section of the test. During vector execution, the datais read
sequentialy and applied as vector states to groups of pins.

The data block defines the data source. The source can be a cross-
compiler generated hex records, integer, or a series of ASCII values
defined directly within the block. The data block statements specify
the data to be programmed and its address location. The data values
are driven on to the appropriate pins by use of adrive statement on a
host vector. This host vector defines the control lines necessary to
create the full bus cycle. Since the data source is generally a standard
data format and a fixed size, flash digital tests need to interpret and
apply the correct data within the context of a standard digital test.

The compiler introduced at B.03.00 provides many new options that
enable digital teststo program flash devices. The automatic

Flash70 Digital Tests 3-11

Flash Programming Guide

interpretations within the software make it easier to get fast, safe and
accurate programming results. Flash70 software accommodates the
variations in the types of flash devices and data types used in
programming. You can activate Flash70 to program your devices by
including the "flash" designation within the flash digital test.

For moreinformation on data blocks, see Chapter 4, “Data Sources
for Flash Programming.”

|

Index Flash70 Digital Tests 3-12

7~ HEWLETT® Chapter 4
LA eacicans Data Sources for Flash Programming

Rev. A

This chapter describes:
¢ Data Blocks and OBP, on page 4-2
¢ Formatted Records, on page 4-4
¢ Motorola S-Records, on page 4-4
¢ Intel Hexadecimal Records, on page 4-9

¢ General Data Block Usage, on page 4-16

a1 0verview

Flash device programming requires an understanding of data blocks
and formatted data records. Within aflash digital test, test
programmers provide data structures known as data blocks to define
the data source used to program aflash device. The data source is
contained in an external file known as a formatted data record.
Formatted data records supply the data used to program flash tests.

Index Data Sources for Flash Programming 4-1

Flash Programming Guide

a2 Data Blocks and OBP

A datablock enables a set of data to be defined in VCL and assigned
to agroup of pins. Data blocks must be read sequentially; therefore,
they can be used in repeat |loops. Two types of data can be defined in
adata block:

¢ Decimal integers. These are saved as 32-bit, twos-
complement values that can represent positive or negative
decimal values or the decima equivalents of ASCII
characters. These can be defined in the VCL test, or passed to
the test in variables or from files.

¢ Pin states formatted as Intel g Hex Format records or as
Motorolag S-Records, passed to the test from files.

Data blocks are defined in the Vector Definition section of the test.
During vector execution, the data can be read sequentially and
applied as vector statesto groups of pins. Except that the dataisread
sequentidly, thisisbasically the same as applying an array of datato
apin group. The VCL statements associated with data blocks are:

¢ "data" and "end data" (Vector Definition) — start and end a
data block definition

¢ ‘"values" and "file" (Vector Definition) — define the data in
the block

¢ "next" (Vector Execution) — increment the counter so that
the next datum will be read

¢+ "rewind" (Vector Execution) — return the counter to the first
datum in the data block

In addition to the statements, two parameters, "drive data" and
"receive data", are used by the vector execution statements ("count”,
"execute" and "preset counter") to drive or receive the next datum
from the block.

4.2.1Using Data Blocks for Flash Programming

Data blocks are used in flash programming to copy address and data
information from an external formatted record file to a flash device.
External data records such as "Hex_Record_Data" and

Index Data Sources for Flash Programming 4-2

Flash Programming Guide

"S Record Data" provide the formatted data that determines record
type, length, offsets, and other data for flash programming.

4.2.2 Data Block Example Using a Motorola S-record

data S Record_Address to groups Addressl
file "S Records" 180 s record address ! selects address part of "S_Records"
end data

data S _Record_Data to groups Datal
file "S Records"” 180 s record data | selects data part of "S Records"”
end data

Figure4-1 DataBlock Example Using a Motorola S-Record Source File

In this example, the data blocks are named, respectively,

S Record Addressand S Record Data. S Record Addressis
assigned to a group of pins named Addressl and S_Record Datais
assigned to agroup of pins named Datal. Thefile statement specifies
the formatted data record file from which to extract data and the data
type to be extracted—either address or data.

At runtime, the test reads the data form the specified file statement in
each data block. Thus, the first data block, S_Record_Address, reads
180 elements or bytes of address information from the formatted
Motorola S-Record file "S_Record_Data" into the data block named
S _Record_Address. Inthe second data block, S_Record_Data, the
file statement reads 180 elements of data into the data block named
S Record_Data.

4.2.3Data Block Example Using an Intel Hexademical Record

To download a single Intel Hex file into an Address data block and a
separate Data data block, the VCL syntax differs only slightly:

dat a Hex_Record_Address to groups Addr
file "Hex_Record_Data" 180 hex record address

end data

data Hex_Record Data to groups Data
file "Hex_Record_Data" 180 hex record data

end data

Index Data Sources for Flash Programming 4-3

Flash Programming Guide

a3 Formatted Records

Formatted data records are used to define the data for programming
flash devices. The most common data records used for flash
programming are the Intel g Hexadecimal and Motorolag S-Record
formats. Integl Hex and Motorolag S-Record data records are
formatted files. Datais extracted from the formatted file through the
use of adata blocks.

a4 Motorola S-Records

Index

The Motorola S-Record file record format consists of five fields: the
record type, record length, address, data, and the checksum byte for
the record. Thisfield order is shown in Figure 4-2 below.

RT

Record

Type
(1 byte)

RL AAAA DDDD CcC
Record Addr ess Dat a Checksum
| ength (2, 3, or (1 byte)
(1 byte) 4 bytes)

Figure4-2 Motorola S-Record Genera Record Format

RL

AAAA

DDDD

CcC

The record typeisindicated by an Sfollowed by asingle
character which defines whether it is a start record, data
record or end record. The following record types are
recognized by HP 3070 software: SO, S1, S2, S3, S7, S8,
or S9. VCL reads only data records and ignores start and
end records.

Record length defines the byte count in the record. The
byte count is the total number of bytes used by the
address, data and checksum fields. Each byteis
represented by two characters. HP 3070 software allows a
maximum record length of up to 256 characters.

2, 3, and 4 byte addresses at which the datafield isto be
loaded into memory.

From O to n bytes of executable code, memory loadable
data, or descriptive information.

The checksum is formed by taking the sum of all the

bytesin the length address and data fiel ds and then taking
the one’s complement.

Data Sources for Flash Programming 4-4

Flash Programming Guide

441 Record Types

The Motorola S-Record format record type isindicated by acapital S
followed by a 1-character record type. HP 3070 software recognizes
the following record types:

S0 = Start record.
S1 = Data Record (4 character address, 2 bytes, 16 hits).

VCL reads only these
record type fields and S2 = Data Record (6 character address, 3 bytes, 24 hits).

i gnores the others.
S3 = Data Record (8 character address, 4 bytes, 32 hits).
S7 = End Record (used with 8 character addresses).
S8 = End Record (used with 6 character addresses).

S9 = End Record (used with 4 character addresses).
NOTE When programming flash devices with Motorola S-Record data:
¢ All values are hexadecimal
¢ Record types SO, S7, S8, and S9 are ignored
¢ Checksum values areignored
¢ Unknown record types areignored
¢ Linesnot starting with an"'S" raise an exception

¢ Duplicate addresses result in concatenated data

4.4.1.1 Start Record

Record type SO, the start record, is normally used to signal that other
datarecords follow. It may be used to store additional information in
the object file in the datafield. The start record begins with the
capital S start character ("S") followed azero. The start record, SO, is
followed by the 2-character byte count, a 4-character address
("0000") and a 2-character checksum. The following is an example
of the simplest start record (spaces are included for clarity only and
are not present in areal object file).

Example: SO 03 0000 FC

Index Data Sources for Flash Programming 4-5

4.4.1.2 Data Record

4.4.1.3 End Record

Index

Flash Programming Guide

Therecord types S1, S2, S3 are virtually identical and are the records
which contain the actual data of the object file. The record begins
with the start character ("S") followed by the 2-character byte count
and the appropriately sized address field. The data bytes follow the
address field and the record is terminated with the 2-character
checksum. Below are examples of S1, S2, and S3 data record
formats. Spaces are included for clarity only and are not present in
thereal object file.

Data Record Type Examples
S1 07 1FFO 1B2C3E4F 7F

S2 0B 002FF0 1B2C3E4F506172 8E

S3 15 FFFF0010 000102030405060708090A0BOCODOEOF FF

The record types S7, S8 and S9 are also identical and are used to
indicate the end of dataif the addressis O or the start addressiif the
address is non-zero. The three different record types are required for
the 3 different address field sizes. The record begins with the start
character ("S") followed by the 2-character byte count and the
appropriately sized address field. Generally, an end record has no
data bytes. The record terminates with the 2-character checksum.

End Record Type Examples
S7 05 00000000 FA

S8 04 000000 FB

S9 03 0000 FC

Data Sources for Flash Programming 4-6

Flash Programming Guide

4.4.2 Motorola S-Record Example

The following isan example of aMotorola S-Record file. It contains
astart record, a 6-character address data record and the appropriate
end record.

SO0 03 0000FC

S2 08 1000F0 01020304 ED

S8 04 000000 FB

Which trand ates as follows:

Address: Data:
1000FO0 01
1000F1 02
1000F2 03
1000F3 04

Index Data Sources for Flash Programming 4-7

Flash Programming Guide

4.4.3 Structure of a Motorola S-Record

Index

Small example of Motorola s record:

S00B000044415441120492F4FF33333

S113000000FF0004000400040004000400040004D1
$113001000040004000400040004000400040004BC
$113002000040004000400040004000400040004AC
$1130030000400040004000400040004000400049C
$1130040000400040004000400040004000400048C
$1130050000400040004000400040004000400047C
$1130060000400040004000400040004000400046C
$1130070000400040004000400040004000400045C
$1130080000400040004000400040004000400044C
$1130090000400040004000400040004000400043C
S11300A0000400040004000400040004000400042C
$11300B0000400040004000400040004000400041C
$1130000000400040004000400040004000400040C
$11300D000040004000400040004000400040004FC
S11300E000040004000400040004000400040004EC
S11300F000040004000400040004000400040004DC

Start Record:

0B000044415441120492F4FF33333

ERecori

1

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

0 010G D0 Q0 08RG 092

Length Aﬂdress Dat

4

0000 00FF0004000400040E04000400040004

0010
0020
0030
0040
0050
0060
0070
0080
0090
00AO
00BO
00CO
00DO0
00EO
00FO0

00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004
00040004000400040004000400040004 o

R RS EESEEEEEE

Data Sources for Flash Programming 4-8

Flash Programming Guide

a5 Intel Hexadecimal Records

Index

The Intel 32-bit Hexadecimal Object file record format has a 9-
character, 4 field prefix that defines the start of the record, byte
count, load address, and record type. The record format also has a 2-
character suffix containing a checksum.

An Intel Hex record is composed of five fields: load length, address,
record type, data, and checksum. A colon defines the start of the
record followed by a byte count (Iload length), address, record type,
data, and checksum. Each character in the datafile represents 4 bits
of information.

Thisfield order is shown below:

Figure4-3 Intel Hex Record General Record Format

tLL AAAA RT DDDD CcC

Figure4-4 ":" Addr ess Rec. Type Dat a Checksum

Load Length

A colon defines the start of the record.

LL Load length represents the number of data bytesin the
record.

AAAA Thisisthe 16 bit load address.

RT The Intel Hexadecimal Object file record format contains
Six record types.

00 = Data Record.

01 = End Record.

02 = Extended Segment Address Record.
03 = Start Segment Address Record.

04 = Extended Linear Address Record.
05 = Start Linear Address Record.

Data Sources for Flash Programming 4-9

Checksum = "FC'

Flash Programming Guide

DDDD Dataconsists of from O to n bytes of executable code,
memory loadable data, or descriptive information.

CcC The checksum is formed by taking the sum of all the
bytesin the length address and datafields, and then taking
the one’s complement.

Data = "0000"
Record Type = "02"
Address = "4000"

Load Length = ":02"

45.1Record Types

Index

—

:02400002000028

: 2000200098B0O0BC2AAE110028AEFO00029AE000205AE800046BDF80BFF9006990690C6380C9
: 2000400080BF70006990690C588080BF60006990690C58807DAEO0007D0C5B807DAESO00AC
: 200060007D0C5A807DAED9007D0C6380898B00BC21AE010004AE000042BE7 DAEBD277DOFEQ
: 200080001 EAEO00026AE1000075EE807075DA80000B9639064906A9000B100BOCABEFF7F6C
: 2000A00011A780BF000060B11FBBA09009BFO0001CABEFFO3A09009BFO008CABEFFF7A09059
: 2000C00080BF60006990690C588080BFFFFF07BB3CBES8OBF1F12COBF0080108809BF001083
: 2000EO0080BF3212A0BF1F12098800BC888BC6BEGES801008A98B12A61108A88B12A7807A38

Figure4-5 Intel Hex DataFile

The Intel 32-bit Hexadecimal Object file record format contains six
record types

00 Data Record

01 End Record

02 Extended Segment Address Record
03 Start Segment Address Record

04 Extended Linear Address Record

05 Start Linear Address Record

Data Sources for Flash Programming 4-10

45.1.1 Data Record

4.5.1.2End Record

Flash Programming Guide

Record type 00, the data record, is the record which contains the data

of the file. The data record begins with the colon start character (":")
followed by the byte count, the address of the first byte and the

record type ("00"). Following the record type are the data bytes. The
checksum follows the data bytes and is the two’s compliment of the
preceding bytes in the record, excluding the start character. The
following are examples of data records (spaces are included for
clarity only and do not occur in a real object file).

:10 0000 00 FFFEFDFCFBFAF9F8F7F6FSFAF3F2F1F0 FF
:05 0010 00 0102030405 AA

Record type 01, the end record, signals the end of the data file. The
end record starts with the colon start character (":") followed by the
byte count ("00"), the address ("0000"), the record type ("01") and
the checksum ("FF").

: 00 0000 01 FF

4.5.1.3Extended Segment Address Record

Record type 02, the extended segment address record, defines bits 4
through 19 of the segment base address. It can appear anywhere
within the object file and it affects the absolute memory address of

all subsequent data records in the file until it is changed. The
extended segment address record starts with the colon start character
(":") followed by the byte count ("02"), the address ("0000"), the
record type ("02"), the 4 character ASCII representation of the
hexadecimal number represented by bits 4 through 19 of the segment
base address and the 2 character checksum.

: 02 0000 02 1000 55

4.5.1.4Start Segment Address Record

Index

Record type 03, the start segment address record, defines bits 4
through 19 of the execution start segment base address for the object
file. This record is currently ignored by the HP 3070.

: 02 0000 03 0000 55

Data Sources for Flash Programming 4-11

Flash Programming Guide

45.1.5 Extended Linear Address Record

Record type 04, the extended linear address record, defines bits 16
through 31 of the destination address. It can appear anywhere in the
object file and it effects the absolute memory address of all
subsequent data records in the file until it is changed. The extended
linear address record starts with the colon start character (")
followed by the byte count ("02"), the address ("0000"), the record
type ("04"),the 4 character ASCII representation of the hexadecimal
number represented by bits 16 through 31 of the destination address
and the 2 character checksum.

: 02 0000 04 FFFF 55

45.1.6 Start Linear Address Record

NOTE

Record type 05, the start linear address record, defines bits 16
through 31 of the execution start address for the object file.This
record is currently ignored by the HP 3070 software.

: 02 0000 05 0000 55

When programming flash devices with Intel Hex datarecords:
¢ All values are hexadecimal
¢ Record types 03 and 05 areignored
¢ Checksum values areignored
¢ Unknown record types are ignored

¢ Linesnot starting with acolon (":") raise an exception

4.5.1.7 Intel Hex Record Example

Index

The following is an example of an Intel Hexadecimal Object file
record. It contains the following records. extended linear address,
extended segment address, data and end.

: 020000040108EA

: 0200000212FFBD

: 0401000090FFAA5502
: 00000001FF

Data Sources for Flash Programming 4-12

Flash Programming Guide

1. Determinethe extended linear address offset for the datarecord.
(0108 in this example)

:02 0000 04 0108 EA

2. Determine the extended segment address for the data record.

(12FF in this example)

: 02 0000 02 12FF BD

3. Determine the address offset for the datain the data record.
(0100 in this example)

:04 0100 00 90FFAA55 02

4. Caculate the absolute address for the first byte of the data
record

108 000 linear address offset shifted |eft 16 bits
+ 0001 2FF0 segment address offset shifted left 4 bits
+ 0000 0100 address offset from data record

= 0109 30F0 32 bit address for first data byte

5. Which resultsin the following:

010930F0 90
010930F1 FF
010930F2 AA
010930F3 55

Index Data Sources for Flash Programming 4-13

Flash Programming Guide

4.5.1.8 Extended Segment Record Example

The following Intel Hex example is comprised of two extended
segment records and four datarecords. To better understand how
extended addresses behave, focus on the addresses highlighted

below:
Record Type = "02"

_ Extended Address = "A000"

L1]
:02000002A000FC a4 ol Address = ABOOO"

(Ext ended Address plus Address)

1

2" :0280000¢00245A
3" :0280020QFC3F41
4* : 02FFFEOQC200BF

Data for records 2, 3, and
4. One ni bbl e per address
| ocation (e.g. A8000
contains "00", and A80001
contains "24").

* Data Number is not part of data record.
Figure4-6 Extended Address Records

Though the addresses appear to be 8000, 8002, FFFE, 0000, and
0002, the compiler interprets these addresses as A8000, A8002,
AFFFE. The examplein Figure 4-6 shows datarecordsfrom 1 to 5.
The following steps shows which addresses the data record will be
programmed to...

1. Theinformation following the "02" declaration offsets address
subsequent addresses by "a000". This occurs on every address
until another address record type occurs.

2. The datarecord immediately following the extended segment
record (datarecord 2, in Figure 4-6, isadded to "A000". The
addresses and data for this record follows..

A000

+ 8000
A8000 Data = 00
A8001 Data = 24

3. Datarecord 3 of Figure 4-6 will contain the following data at

Index Data Sources for Flash Programming 4-14

Flash Programming Guide

the following addresses based on this calculation:

A000

+ 8002
A8002 Data = FC
A8003 Data = 3F

4. Datarecord 4 of <HYPER T-11-ITAL>Figure -4-6 on page -14
will contain the following data at the following address based
on this calculation:

A000

+ FFFE
AFFFE Data = C2
AFFFF Data = 00

Index Data Sources for Flash Programming 4-15

Flash Programming Guide

46 General Data Block Usage

Following is an example of adata block that shows some of the ways
that datais defined in the block. The block begins with the "data”
statement and ends with the "end data" statement. The "values' and
"file" statements assign valuesto the block. In this example the block
is named "Device_Data" and is assigned to a previously defined
group of pins named "Data Bus'.

! in the Vector Definition section

data Device_Data to groups Data_Bus
val ues 20
val ues -104
val ues 2, 384, -7, 66
val ues A(3), A(9), A(21)
val ues B(2:51)
file "Data_File" 120
end data

The example data block contains atotal of 179 decimal values. In
sequence, these are:

20, -104, 2, 384, -7, 66
three valuesfrom array "A"
fifty valuesfrom array "B"

one hundred and twenty values from afile named "Data_File"
Here are some general notes about the values shown in the example.

¢ Eachvaueis saved as a 32-bit, twos-complement, number.
The values are binary and are not affected by the format that
isin effect. A valueis applied to a pin group in the same way
as an array element is applied. For example, with a 3-pin
group, the value 6 applies bits 1 1 0 to the pinsin the order
the pinswere assigned to the group. Where fewer than 32 bits
are required, the higher-order bits areignored.

¢ Arraysin VCL are zero-based. Therefore, the values from
array "A" are from its fourth, tenth and twenty-second
elements. "B(2:51)" indicates that 50 consecutive values are
to be taken from array "B", from elements 2 through 51,
inclusive. These arrays are passed to the test from the
testplan.

Index Data Sources for Flash Programming 4-16

Index

Flash Programming Guide

¢ |If thefile named in the "file" statement is not in the same
directory asthetest, the file id must indicate the file's path
name. If the file contains values, they must be integers, with
only one value on each ling; if the file contains formatted
records (described later), each line must contain only one
such record. In the example shown above, 120 consecutive
numbers will be read from the file at run time. Reading
always starts at the beginning of thefile.

¢ Thefileshould contain at least the number of values specified
in the "file" statement. If there are more, the extravaues will
beignored; if there are fewer, "1" stateswill be driven at run
time for the missing values. The receivers for missing
received values will be set to their high-impedance states.

Following is an example of vector execution statements that read the
datafrom block "Device Data" and apply it to the assigned group of
pins, "Data Bus" from the preceding example. The vector execution
statements use their "drive data' and "receive data" parameters to
access the data block.

! in the Vector Execution section

repeat 179 tinmes
hom ngl oop 25 tines
execute Wite
execute Keep_Control drive data Device_Data
execute End_Cycl e

execute Verify

execut e Keep_Control receive data Device_Data exit
i f pass

execute End_Cycle

end hom ngl oop
next Device_Data
end repeat

rewi nd Device_ Data

The preceding example is asimplified version of aloop intended to
program and verify flash programming. In the homingloop, the first
value from the data block, "Device Data", iswritten into the flash
RAM and then verified. The exit occurs from the homingloop when
the dataisread correctly. Since thisisatrue counted homingloop, the
test stops after the 25th iteration of the loop if the correct datais not
read.

Data Sources for Flash Programming 4-17

Index

Flash Programming Guide

After the exit from the homingloop, the "next" statement increments
the data counter by one, so that, the next time through the
homingloop, the next value will be used from the data block. Notice
that, until the "next" statement is executed, all "drive data" and
"receive data' parameters reference the same element from the data
block. At the end of the repeat loop the "rewind" statement enables
you to reuse the data in the block. It resets the counter in the data
block so that the next loop can start reading data at the beginning of
the block.

Aswith array elements, the vector that drives or receives an element
from the block also executes any other states that are specified for
that vector in the Vector Definition section of the test. Data blocks
cannot be specified in a PCF vector.

A "drive data’ must apply to agroup that consists either of input pins
or of bidirectional pins, and a"receive data' must apply to a group
that consists of output pins or bidirectional pins. The direction of a
group of bidirectional pins is determined by the "drive data" or
"receive data' parameter in the vector execution statement. If thereis
aconflict, those parameters override the direction specified in the
vector definition. The parameters also override any conflicting states
set on any group of pinsin the vector definition.

Any one vector can drive or receive elements from more than one
data block. The element from any one block can be applied only to
the pin group named in the definition of that block. Any one pin
group can be associated with only one data block. Since the "next"
statement names the data block to which it applies, it allows you to
increment the data counters for the blocks independently.

Other rules that apply to the use of data blocks are:

¢ Data blocks cannot be used on the pinsin the count fieldsin
counters.

¢ Pinsthat are be used with a data block can be assigned to only
one group. If they are assigned to more than one group, only
the last assignment will be valid.

¢ Anerror occursif agroup that is assigned a data block
contains an asterisk.

Data Sources for Flash Programming 4-18

Flash Programming Guide

34.1 Testing Single-Byte Devices with Data Records

Index

The data block can also be used with the formatted Flash RAM
records. Either Intel s Hex Format or Motorolag, S-Records can be
used. These records have an address part and adata part. Thefile
name is specified in the data block definition, as shown in the
example bel ow. Single-byte programming is used when no more than
eight bits are to be programmed at atime.

This example creates two data blocks that use formatted data. The
first block reads only the addresses from the file. These are the
addresses where the data bel ongs in the device under test. The second
block reads only the data to be written to, or read from, those
addresses. The datatype ("address' or "data") is specified in the
"file" statement in each block. At runtime, the test reads the data
from the specified file and selects either the addresses or the data
from each record, as specified by the last parameter in the "file"
statement. In this example, 128 addresses and 128 bytes of data, are
read from the file.

data S Record_Address to groups Addressl

file "S records" 128 s record address ! selects
"address" part of each record
end data

data S Record_Data to groups Datal

file"S records"” 128 s record data ! selects "data" part
of each record
end data

Blocks for the Intel g Hex Format would be similar except that
keyword "hex" is substituted for keyword "s" in the "file" statement.
For example:

file "Hex_Format_Data" 128 hex record address

These data blocks are referenced in the vectors in exactly the same
way as the data blocks that contain numeric data, described earlier.
Following is an example of aloop that uses the two data blocks
defined above. The example assumes that pins 8 through 1, in that
order, were assigned to group "Datal":

repeat 128 tinmes

execute Read drive data S Record_Address receive data
S Record_Data

next S_Record_Address

next S_Record_Data
end repeat

On each pass through the loop, eight bits (one byte) would be read
from group Datal, with the |least significant bit read from pin 1.

Data Sources for Flash Programming 4-19

Flash Programming Guide

3.4.2 Testing multibyte Devices with Data Records

Index

Data blocks can a so be used with multibyte-wide devices, enabling

you to test memory devices, and banks of devicesin parallel, up to
whatever width your records will allow. The number of bytesis
determined by the number of pins assigned to the data bus — there
will always be a whole number of bytes. For example, 16 pins results
in a width of two bytes, and 28 pins results in a width of four bytes;
in the latter case, the four most significant bits in the fourth byte of
data from the record would be ignored. Following is an example of a
program that reads data from a device two bytes at a time.

assign Data_Bus to pins 16, 15, 14, 13, 12, 11
assign Data_Bus to pins 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

data S Record_Address to groups Address_1
file "S records" 128 s record address
end data

data S Record_Data to groups Data_Bus
file "S records" 128 s record data
end data
uni t
repeat 64 tines
execute Read drive data S _Record_Address receive data
S Record_Data
next S Record_Address
next S _Record_Data
end repeat
end unit

Because there are more than 8 pins, VCL automatically assumes
multibyte programming, in this case two bytes wide. In the Vector
Execution section, each time the data is accessed, two bytes will be
read, which is why the loop is repeated only 64 times. The "next"
statements increment the data and address counters by two (that is,
by the byte width).

The bytes are assigned to the pins in reverse order, with the least
significant bit assigned to the pin on the right. In this case, the first
byte read is assigned to pins 8 through 1, with the most significant bit
on pin 8. Similarly, the second byte is assigned to pins 16 through 9.
Notice that you can change the order that the bits will be assigned to
the pins, simply by rearranging the pin order in the "assign”
statements.

If there were, say, only 12 pins (12 through 1), then the four higher
order bits in the second byte would be discarded. Starting from the
right, bits O through 3 would be assigned to pins 9 through 12,
respectively, and bits 4 through 7 would be ignored.

Data Sources for Flash Programming 4-20

Flash Programming Guide

Addressing in the file must be arranged so that, in each group (byte

width) of bytesthat is read from the file, the first byte must have an
appropriate address. That is, an address whose value is divisible by

the byte width with no remainder — 0, or 2, or 4, or 6... in the case of
2-byte width. Also, the addresses of the bytes in each group must be
contiguous. Addresses with up to 32 bits can be accommodated.

With multibyte programming, VCL automatically sets the byte-width

to fit the number of pins in the data bus, as described above. It also
increments the addresses that are generated by the same value as the
byte-width. If four bytes are to be read, the addressing will be
incremented by four. In this case, the address of the first byte in each
group of bytes must be a value that is divisible by four with no
remainder (O, 4, 8...).

The "file" statement has an optional "step" parameter that can be
used in the special case where you are writing to, or reading from,
multiple devices in parallel but addressing them individually. As an
example, suppose you have two one-byte wide devices. In this case,
your data bus is two bytes wide but you need to increment the
address of each device only by one. Assuming a data bus with 16
pins, the following statement will allow the address that is driven by
the test to be incremented by one for each two bytes that are read in
parallel:

file "Hex_records" 128 hex record address step 1

You can have any step value provided that it is consistent with the
structure of your circuit and of your data records. The byte-width
must be evenly divisible by the step value. The actual addresses that
are driven to the address bus are calculated as

(logical address * step value) / byte width

For each set of data read, the "logical address" is the address in the
record of the first byte.

For the above example, where the data is two bytes wide, if the

logical addresses of the data are 0, 2, 4..., the driven addresses are 0,
1,2....

Index Data Sources for Flash Programming 4-21

Flash Programming Guide

Index Data Sources for Flash Programming 4-22

/A cicinmn

Chapter 5
VCL Syntax for Flash OBP

5.1 Overview

Index

Rev. A

This chapter describes:

¢

¢

VCL Syntax in Flash Digital Tests, on page 5-2

The Structure of a VCL Test, on page 5-2

Placing Flash VCL Statements in a Test, on page 5-3
Syntax to Inhibit Flash70 Algorithm, on page 5-13.
File Statement Options, on page 5-14.

28f160 "u8:program" VCL Example, on page 5-18.

Programming flash devices requires an understanding of Vector
Control Language (V CL), the structured programming language used
to write flash digital tests. Flash70 introduces several new VCL
statements that allow you to control and modify flash digital tests.
Read this chapter to learn about the structure and usage of VCL
syntax statements for flash programming.

VCL Syntax for Flash OBP 5-1

Flash Programming Guide

52VCL Syntax in Flash Digital Tests

Vector Control Language (VCL) isastructured programming
language used to write tests for individual digital devices or clusters
of digital devices. A VCL test appliesaseries of vectorsto the device
and compares the device's actual responses to the expected
responses. Based on these responses, atest either passes or fails.

A flash VCL test is composed of VCL programming statements.

V CL statements are organized into test sections that perform specific
functions when the test is executed. This section describes the VCL
syntax conventions for flash programming.

NOTE: The "program” test examples provided in this section
are written for an Intel 28f160 flash device and use a
Motorola S-Record data file named "2Mx16.data"

53 The Structure of a VCL Test

A VCL test contains four sections, each composed of a set of
programming statements. These sections must afpear inthe

following sequence: 1.) Declaration, 2.) Timing~, 3.) Vector
Definition, and 4.) Vector Execution.

5.3.1 Declaration section

The Declaration section defines the type of test, device
characteristics such as inputs and outputs, and the voltage levels
required to the test the device.

532 Timing section

The Timing section defines the timing sets. Timing sets control the
formatted drivers and receivers and the vector drive and receive

times. Timing sets cannot be used with the Flash70algorithm. Refer

to the HP 3070 Users’ Manual for more information. See "System
Clocks & Test Timing" and "Timing Sets" ifest Methods: Digital,
3.3& 34.

1. If avector cyclelreceive delay is defined, the timing section should appear
firstinaVCL test.

Index VCL Syntax for Flash OBP 5-2

Flash Programming Guide

5.3.3 Vector Definition section

The Vector Definition section defines a series of vectors, each of
which contains a pattern of bits to drive to the device and the pattern
of bits expected to be received in response from the device.

5.3.4 Vector Execution section

The Vector Execution section contains a series of vector execution
statements that apply the vectors in the required order to determine
whether or not the device is operating properly.

54 Placing Flash VCL Statements in a Test

VCL statements must appear in the appropriate section of aflash test.
The sections of a VCL test and the syntax for implementing flash
tests are described below.

54.1 VCL Statements in the Declaration Section of a Test

The following VCL statements belong in the declaration section of a
digital flash test. These statements are likely to appear in most flash
tests.

flash

generate static test
famly

dynami c

Index VCL Syntax for Flash OBP 5-3

Flash Programming Guide

5.4.1.1 Example Declaration Section for a Flash Test

Index

The following example demonstratesthe VCL statements and syntax
commonly used in the Declaration Section of aflash test.

It > > > Declaration Section < < < iy

flash

generate static test

assign Address _bus to pins 4, 5, 6,
32

assign Data_bus to pins 52, 50, 47,
33

famly Flash_5V
dynam ¢ Data_bus, Address_bus

Figure5-1 Flash VCL Declaration Statements

These Flash VCL Declaration Statements have the following
effect:

fl ash

The "flash”" statement improves data utilization and flash
programming speed.

generate static test

The optional "generate static test" statement instructs the
compiler to incorporate the data file directly into the
object file of the "program"” test.

dynam c Data_bus, Address_bus

The"dynamic" statement assigns dynamic resourcesto all
pinslisted in the "Data_bus" and "Address_bus'
assignment statements. This statement is not required
with Flash70.

VCL Syntax for Flash OBP 5-4

Flash Programming Guide

5.4.1.2 .Description of Declaration Statements

5.4.1.2.1flash

5.4.1.2.2 generate static test

Index

The "flash" statement activates the compiler features that improve
data utilization and programming speed. If Flash70 softwareis
installed on your test system, you can use this statement to enhance
programming speed. Enter this statement at the beginning of the test
in the Declaration section. Also, if you wish to use the faster Flash70
algorithm, enter the statement "enable Flash70" in the board "config"
file.

NOTE Flashinhibit statements alow you to selectively use

L= Flash70 features. Inhibit statements are inserted into the
test in the Declaration section. See Syntax to Inhibit
Flash70 Algorithm, on page 5-13.

The "generate static test” V CL statement speeds up thefirst runtimes
of test files that use segmented data (e.g. the "program™ and "verify"
flash OBP tests). This statement instructs the compiler to include the
data file contents in the test object file (e.g. "u8:program.o”). If the
data file changes on aregular basis, this statement is not typically
used, since data changes require recompilation.

The "generate static test” statement is used only in executable tests
and isignored during alibrary compilation. If the datafiles are not
available when the executable test is compiled, an error occurs. If an
error occurs, supply the required data files or comment out the
"generate static test" statement in the "program” or "verify" test
before recompiling.

The "generate static test” statement must appear at the beginning of
digital test files before pin assignment declarations. When using this
statement, speed improvements depend on the size of the datafile
being programmed.

NOTE Although the "generate static test" statement improves

7 first run times significantly, the object file that is
created can be very large. If disk spaceislimited,
review the size of the object files precompiled with
"generate static test”.

VCL Syntax for Flash OBP 5-5

Flash Programming Guide

5.4.1.2.3 family

The "family" VCL statement declares the logic family of the device
under test. The "family” statement enables the compiler to generate
the setup code for the drivers and receivers on the pin cardsin the
testhead. Any one of the following "family" statements can be
included in the Declaration section of the VCL test: "FI ash_5v",
"Fl ash_3v","Fl ash_2. 2v","Fl ash 1. 8v".

NOTE Multipleflash families can be declared in the "board"
ISR file. However, only one flash family should be called by
the digital libraries of your flash test suite.

5.4.1.2.4 dynamic

If you are not using Flash70 software, this statement dramatically
improves the speed of flash device programming. The "dynamic"
VCL statement appears in the Declaration section of a VCL test to
instruct the Module Pin Assignment software to assign dynamic
resources to a specified groups of pins. Since assigning pinsto
dynamic resources has first priority, the "dynamic" statement needs
to appear in one test, generally, the "program" test. This statement
must be included during initial program devel opment to ensure that
adequate resources are assigned.

NOTE Although "dynamic" pin assignments do not improve
Flash70 programming speed, this statement should be
used for backward compatibility.

5.4.2 Flash VCL Statements in the Definition Section of a Test

In the definition section of aflash test, the data file used for
programming is specified by the "file" statement. Also, vectors are
defined in the definition section. Inthe Flash VCL Definition
Statements, on page 5-7, the statements that appear as blue text
provide examples of flash VCL statements included in the definition
section.

Index VCL Syntax for Flash OBP 5-6

Flash Programming Guide

5.4.2.1 Example Definition Section of a Flash Test

Imr - > > > Definition Section < < < i
vector Initialize

vect or Keep_Contr ol
vector Three_state

vect or XSR_Ready

Cal | ed by execution
statenent in Figure 5-4.

vector Data_W
initialize to Keep_Control
drive dat a_bus ! bidirectional group of pins declared as inputs
set Address bus to "000000"
set WE bar to "0"
set Data_bus to "0000"

end vector

data Data to groups Data_bus
file "2Mk16. data" 1048576 s record data
end data

These two data bl ocks

define the vari abl es

used by vector "Data_ W

and the "execute.

drive" statement in
Figure 5-4.

data Address to groups Address_bus
file "2M16. data" 1048576 s record address
end data

Figure5-2 Flash VCL Definition Statements

The file statements shown in Figure 5-2, the Flash VCL Definition
Statements have the following effects:

¢ The"file" statements enable the flash digital tests to program
1,048,576 bytes of formatted data from a Motorola S Record
named "2Mx16.data’".

¢ Both address and datainformation is contained within thefile
"2Mx16.data".

¢ Inthe execution section of the test, the vector "Data W" is

used as atemplate to drive the address and data from the data
record to the "Data bus" and "Address bus' pin groups.

Index VCL Syntax for Flash OBP 5-7

Flash Programming Guide

5.4.2.2 Description of Definition Statements

5.4.2.2.1file

5.4.2.2.%ile statement option

The"file" statement isused to assign valuesfrom adata sourcefileto

adata block. This statement appearsin digital tests that use dynamic

data(i.e. the"program" and "verify" flash OBP tests). When used for

flash programming, the "file" statement points to a formatted data
file—usually a Motorola S-Record or Intel Hex record. These records
are parsed into an address and a data section when they are read by a
flash data block. Although the file statements in Figure 5-4, the

Vector Declaration and Execution section, refer to a single data

file ("2Mx16.data"), you can use multiple formatted source files to
program address and data information.

For detailed information on data blocks and the various uses of the
file statement, segile Statement Options, on page 5-14.

5.4.3Flash VCL Statements in the Execution Section of a Test

Index

Programming flash devices with Motorola S-Records or Intel Hex
involves the same execution pattern: a repeat loop that programs
segments of a data file onto a flash device. The execution section of a
flash "program” or "verify" test is likely to contain the following

VCL statements:

segnent

repeat [nunber] tines
execute

drive

next address

next data

VCL Syntax for Flash OBP 5-8

<

Flash Programming Guide

Examples of these syntax statements appear in Figure 5-3, Flash
VCL Execution Statements.:

I >>>> Execution Section <<<< Il

unit "Program Mai n Bl ock"
execute Initialize

< Execution statementsthat
initializethe flash device

segnent 2048
repeat 1048576 tines

execute Setup_Program Crd ! data = 40
execute End_Cycl e

execute Data_ W drive data Address drive data Data

execute End_Cycle

wait 4u

hom ngl oop 60000 tines ! either STS or status reg can be used to nonitor

execute XSR Ready exit if pass
execute Three_state
end hom ngl oop

next Address ! point to next address
next Data I point to next data word
end repeat
end segnent

end unit

The homingloop enablesthe HP 3070 to
monitor the XSR_Ready pin urtil the
embedded program algorithm is

Index

completed. The "Three_state" vector
minimizes overdriving of any devices that
have not been disabled.

Figure5-3 Flash VCL Execution Statements

From the execution statements shown in Figure 5-3, you can
determine the following information about the test:

The "segment” statement indicates that the Motorola S-Record data
from "2Mx16.data" file (shown in the definition section, Figure 5-2)
will be programmed onto the flash device in 2048 word® increments
until the 1,048,576 word repeat loop is complete.

1. For our 28f160 example, oneword is 16 bits of information.

VCL Syntax for Flash OBP 5-9

Flash Programming Guide

¢ The amount of data programmed or verified by thetest is
defined by the "repeat [number] times' statement. Counted
by words of data, the number usually matches the size of the
flash device, or if the test is optimized for performance, the
Mb size of the datafile.

¢ The"drive" statement appliesthe datafrom the file defined in
the data block statements shown in Figure 5-2 (thefileis
defined as "2Mx16.data"). Address and Data variables are
passed to the "Data W" vector to drive the address bus and
data bus of the flash device.

¢ The"next Address' and "next Data" statementsincrement the
counter to the next address and next word of datato be
programmed in the segment.

5.4.3.1 Description of Flash VCL Execution Statements

5.4.3.1.1 segment

HP 3070 pin cards do not have enough memory to program an entire
flash device at once. The "segment” VCL statement allows portions
of the data file to be programmed sequentially.

The segmentation val ue represents the number of times these vectors

will be saved in the vector RAM during one download. You cannot
calculate this number because you do not know how much RAM

space will be available. The compiler calculates the space required to

save the compressed vectors during a programming operation. You

can determine a suitable number for segment size by using the guess

and compile technique described in the HP 3070 Users’ Manual, Test
Methods: Digital.

Flash70 segment size

If you are not using Flash70 software, segment size is determined by the vector RAM behind the pins, which
can never exceed 8k. The Flash70 algorithm enables use of sequence RAM for determining segment size.
With the ControlXT cards, this means segments can be up to 1 MB in size. This use of memory greatly
improves programming time.

For more information on Flash70 and Control X T cards, see Chapter 8, “Series and Parallel
Programming.”

Index VCL Syntax for Flash OBP 5-10

5.4.3.1.2 repeat

5.4.3.1.3 execute and drive

Index

Flash Programming Guide

The repeat |oop represents the number of words of data that will be
either programmed or verified by a"program™ and "verify" test. The
size of the repeat loop usually corresponds to the total flash device
Size or the total datafile size. Once the first segment of datais
programmed onto the flash device, the segment ends with the "end
segment” statement, and then the HP 3070 makes another pass
through the "program” test. The VCL code in the Execution Section
in Figure 5-3 instructs the compiler to make 512 passes through the
test. This number is derived from the size of the data, 1,048,576
words, divided by the segment size, 2048 hits.

For example, thefirst pass through the "program™ test driveswords 1
through 2048, the second pass programs 2049 through 4096, and the
third pass programs 4097 through 6144, etc. This process continues
until 1,048,576 words of data are programmed (2 Mb for our 28f160
example).

For more information on the repeat loop syntax, click on the Syntax
Reference button at the bottom of the page and search for "repeat.”

In flash OBP digita tests, the "drive" statement appearsin the Vector
Execution section of the test. The "drive" statement parses addresses
and data from the formatted datafile. It applies this datato a vector,
and this vector drives the data pin states to the device being
programming. The "execute" statement shownin Figure5-4 callsthe
"Data W" vector, parses the address and datarecords to the variables
"Address’ and "Data’, and then the vector drives the pins belonging
to the "Data bus" group. In this manner, every pass through the
repeat |oop programs one word of thefile"2Mx16.data’ onto the
flash device.

VCL Syntax for Flash OBP 5-11

Flash Programming Guide

The relationship between the programming statements in the Vector
Definition and Vector Execution sectionsis shown in Figure 5-4.

Decl ar ati ons:

ector Data W
initialize to Keep_Control
drive Data_bus

set Address_bus to "000000" -
set WE bar to "0" T~
set Data_bus to "0000" \ o
end vector \
| \
data Data to qroups Data_bus - 1
file "2M16. yata" 1048576 s record data 4
end data /
-
-
data Address to grmoups Address, bus y -
file "2Mk16. data" 1048576 s record address
end data
ecution:

(" execute Data W gyi ve date{ Addr ess 'dri ve data @ta)

Figure5-4 Vector Declaration and Execution

Noticethat the "drive data Address" and "drive data Data" statements
reference the data block definitions for "Address bus' and

"Data bus". This reference determines which datarecord in thefile
should be programmed on this pass through the repeat loop. The
"set" statementsin vector "Data W" is a place holder for the "drive
dataData' and "drive data Address' values.

5.4.3.1.4 next

The "next" statement increments the data records by reading the next
value and calculating data length and address fields of the specified
datafile. In the 28f160 example, the "next Address' and "next Data"
statements instruct the HP 3070 software to proceed to the next data
valuein "2Mx16.data".

Index VCL Syntax for Flash OBP 5-12

Flash Programming Guide

55 Syntax to Inhibit Flash70 Algorithm

In some cases, you may not wish to update existing tests using
version B.03.00 or later software. VCL provides syntax to turn off
some or all of the new flash features. To selectively turn off features,
add one or more of the inhibit commands to the beginning of aflash
test (usually, "program” or "verify" tests) before any "assign to"
statements. The inhibit flash commands follow:

5.5.1 Turning off the Flash70 Algorithm

The syntax to turn off the Flash70 agorithm is:

generate flash inhibit dynam c sequence

5.5.2 Turning off All Flash Features

The following statement removes all B.03.00 flash features from a
given OBP "program"” or "verify" test, creating a B.02.75 version of
the library.

This statement must appear in the Declaration section of atest before
"assign to" statements:

generate flash inhibit all

553 Turning off Limited Addressing

The new flash software will not write outside the address size range
of the flash device being programmed. Enter the following statement
into the "program™ or "verify" test to disable this feature.

This statement must appear in the Declaration section of atest before
"assign to" statements:

generate flash inhibit linmted address

5.5.4 Turning off Segment Removal

Index

The new flash software does not continue generating segments
beyond the end of the datafile. If you want the "program" or
"verify" test to program the entire flash part without regard to the

VCL Syntax for Flash OBP 5-13

Flash Programming Guide

datafile size, enter the following statement to the "program” and
"verify" test.

This statement must appear in the Declaration section of atest before
"assign to" statements:

generate flash inhibit segnent renoval

555 Turning off Data Removal

Flash70 software strips the FFH sequences from Intel Hex and
Motorola S-Record datafiles. Enter the following statement into the
"program” and "verify" tests to disable this feature.

This statement must appear in the Declaration section of atest before
"assign to" statements:

generate flash inhibit data renoval

5.6 File Statement Options

Index

Flash tests program flash memories in units of data called segments.
The size of the segment defined in the VCL test determines how
many cells must be programmed at one time. The HP 3070 cannot
stop programming a segment in the middle of execution, even if the
datato be programmed has been exhausted. Since each segment must
be programmed in its entirety, some valid form of data must be
programmed into the remaining cellsif the data runs out in the
middle of a segment.

HP 3070 software version B.03.00 and later provides severa options
for handling the end of data condition in aflash test using file data.
You can choose one of the following options:

¢ Default

Current method: All drivers drive to high state, All receivers
don't care.

¢ ReuseFF

Program locations currently programmed with FF data with
FF data

VCL Syntax for Flash OBP 5-14

5.6.1 Default

Index

Flash Programming Guide

¢ Unused FF

Program locations in the address range but not in the data file
with FF data.

¢ User FF

User provides an address and FF data is programmed at that
address.

NOTE The B.03.00 end of data options are available only on

= HP 3070 Series|| or later. Also, since some flash
devices can be damaged by continuous programming of
data other than FFFFFFFFH, none of these options
alow it.

The default method for handling the end of data conditionisto
program all dynamic driversto the high state and all dynamic
receiversto the don't care state when datais no longer available. All
exigting flash tests, all tests targeting the HP3070 Series ||, and all
tests encountering the end of data condition when using variable data
or ASCII files use the default method.

The default method is predictable. The end of data condition always
resultsin attempts to program location FFFFFFFFH with

FFFFFFFFH. Problems typically occur when location FFFFFFFFH
has aready been programmed to something other than FFFFFFFFH.

The file statement without an end of data modifier implies the use of
the default method. A end of data default modifier to thefile
statement is included for use with the "reuse”, "unused" and "user"
methods.

The following syntax resultsin the default end of data handling
method:

file "data" 131072 s record data
file "data" 131072 s record data default

VCL Syntax for Flash OBP 5-15

Flash Programming Guide

5.6.2""reuse" Data Modifier

The reuse method of handling the end of data condition utilizes
locationsin the datafile containing FFH. These locations provide
data to the dynamic drivers and dynamic receivers on end of data.
This feature will work with the FFH dataremoval feature. The
system removes FFH data from the normal data stream but still
remembers these locations for use in end of data handling.

The reuse method always programs locations with the same data.
There is no danger when programming location FFFFFFFFH unless
it has previously been programmed with FFFFFFFFH. Problems
result when the user programs these FFH locations prior to
programming the device using the record file. Serial numbers, dates
and other small pieces of information may be programmed in these
areas prior to programming the rest of the device data. Swapping the
order of these programming cycles will remedy this problem.

A more insidious problem liesin record files containing no FFH data
locations. It isimpossible to reuse an FFH location that doesn't exist
(asfar astherecord file is concerned). One possible solution is to
adjust the repeat loop and segment size to match the datafile size.

Thefile statement modifier to support the reuse method on the end of
data condition is "reuse" as shown below:

file "data" 131072 s record data reuse

5.6.3"unused" Data Modifier

Index

The unused method of handing the end of data condition uses
locations not contained in the record file subject to the constraints
placed on the address space. The locations are programmed to
FFFFFFFFH on end of data. This method will not use FFH locations
removed by the skip data feature.

This method requires locations not in the record file to be erased.
Serial numbers, dates, and other unique identifiers for aboard may
not have locations entered in the record file but may be programmed
prior to programming with the record file. This situation can cause
failures during programming with the record file.

VCL Syntax for Flash OBP 5-16

Flash Programming Guide

The file statement modifier to support the unused method on the end
of data condition is"unused" as shown below:

file "data" 131072 s record data unused

5.6.4"user" Data Modifier

The user end of data method allows you to specify the location at
which to program FFH data. The location specified isrelative to the
address space of the record file and not to the DUT.

Implementing the user method can cause two problems. Firt, the
specified user address will probably change with each datafile
revision. Second, the specified address may be programmed with
data other than FFH in the record file.

The file statement modifier to support the user method on the end of
data conditionis "user [integer address]" as shown below.

file "data" 131072 s record data wuser O

Index VCL Syntax for Flash OBP 5-17

Flash Programming Guide

5728f160 "u8:program" VCL Example

Sinceit is sometimes easier to understand VCL statements within the context of acompletetest, the
key elements of the "u8:program” test for an Intel 28f160 part follows:

NOTE Thefollowing excerpt includes sections of the test that

illustrate the syntax provided in this chapter. To view an

entire test, choose any library listed under "/hp3070/
library/supplemental/flash”.

e Decl aration Section ---------------- !

assi gn Address_bus to pins 4, 5, 6, 7, 8, 10, 11, 12

assi gn Address_bus to pins 13, 17, 18, 19, 20, 22, 23, 24

assi gn Address_bus to pins 25, 26, 27, 28, 32

assi gn Dat a_bus to pins 52,50, 47, 45, 41, 39, 36, 34

assi gn Dat a_bus to pins 51, 49, 46, 44, 40, 38, 35, 33

assi gn Dat a_St at us to pins 51, 49, 46, 44, 40, 38, 35, 33

I --- END of Pin config for TSOP package --- !

famly FLASH 5V

dynanm ¢ Data_bus, Address_bus

R Definition Section ---------------- !

vector Initialize
drive Data_bus

set CE_bar to "00"
set OE_bar to "1"
set VE_bar to "1"
set WP_bar to "1"
set RP_bar to "x"
set Byt e_bar to "x"

set Addr ess_bus to "000000"
set Dat a_bus to "0000"
end vector

vector Keep_Control
drive Data_bus

set CE_bar to "kk"
set OE_bar to "k"
set VE_bar to "k"
set WP_bar to "k"
set RP_bar to "x"
set Byt e_bar to "x"

set Address_bus to "kkkkkk"
set Dat a_bus to "kkkk"
end vector

vector Three_state

recei ve Data_bus
set CE_bar to "zz"

Index

VCL Syntax for Flash OBP 5-18

Flash Programming Guide

set OE_bar to "z

set VE_bar to "z"

set WP_bar to "z"

set RP_bar to "z"

set Byt e_bar to "z"

set Address_bus to "zzzzzz"
set Dat a_bus to "zzzz"

end vector

vector XSR _Ready
initialize to Keep_Control
receive Data_bus
set Address_bus to "zzzzzz"
format binary Data_Bus
set Dat a_bus to " XXXX XXXX 1XXX XXXX!
format hexadeci mal Data_Bus
set OE_bar to "0"
end vect or

vector Data W

initialize to Keep_Control
drive Data_bus
set VE_bar to "0"

set Dat a_bus to "0000"
end vector

data Data to groups Dat a_bus
file "2MW8.data" 1048576 s record data
end data

data Address to groups Addr ess_bus
file "2M8.data" 1048576 s record address
end data

R LT Execution Section ------------- !

unit "Program Mai n Bl ock"
execute Initialize
execute Cear_Sts_cnd 'l Conmand
execute End_Cycle
execute Status_Read_cnd I'l Conmand = 70H
execute End_Cycle
execute OE true
execut e XSR _Ready
execute End_Cycle

50H

segnent 2048
repeat 1048576 times
execut e Setup_Program Crd I data = 40
execute End_Cycle

execute Data_W drive data Address drive data Data
execute End_Cycle

vait 4u
hom ngl oop 60000 tines
I either STS or status reg can be used to nonitor
execute XSR Ready exit if pass
execute Three_state

Index VCL Syntax for Flash OBP

5-19

Flash Programming Guide

end homi ngl oop
next Address
next Data
end repeat
end segnent

end unit

uni t

"Check Status"
execute Status_Read_cnd
execute Wite
execute End_Cycle
execut e Check_St at us_1xx0000x

end unit 1l

Index

I point to next
I point to next

addr ess
data word

'l Command = 70H

4 3210 (Status Reg.)
!

- Reserved

| | *- Device protect status
| *- Program suspend status
*- Vpp Status

- Program St at us

- Erase Status

- Erase Suspend Status

- Wite State Machi ne Status

Figure5-5 Complete 28f160 "u8:program” VCL Test

VCL Syntax for Flash OBP 5-20

|

7~ HEWLETT® Chapter 6
LA oacicans Generating Flash Digital Tests

Rev. A

This chapter describes the tasks and procedures for generating flash
digital tests, including:

¢ Thetasksrequired to develop flash digital tests. See Flash
Test Development Tasks, on page 6-3.

¢ Theflash OBPtest development environment, including flash
test descriptions and OBP task flow. See Section One: Flash
OBP Programming Steps, on page 6-5.

¢ The procedure for developing flash tests with B.03.00
software. Section Two: Steps to Developing Flash Digital
Tests, on page 6-13.

¢ The procedure for utilizing existing digital test libraries to

develop flash tests. See Section Three: Flash Tests and
Existing Fixtures, on page 6-24.

|

Index Generating Flash Digital Tests 6-1

6.1 Overview

Index

Flash Programming Guide

HP 3070 systems have been capable of on-board programming for
some time. However, now the HP 3070 Series 3 and Flash70
software features make it easier and faster to implement on-board
programming.

Flash device library models automate many flash in-circuit
programming tasks, when used with the HP 3070 Series 3 and
Flash70 software. These flash device library models serve as
templates and can be used to program the most common flash RAM
devices. If aparticular flash device is not included in the standard
library, you can search for aflash library test suite that is similar to
your custom device and modify the test as needed.

The HP 3070’s automated test generation software, IPG, uses HP
3070 standard libraries or custom digital library models to generate a
suite of VCL tests for programming flash devices. These VCL tests
contain programming statements that trigger embedded algorithms
within a flash device. Embedded algorithms perform functions such
as flash device erasure and manufacturer device identificAtion

IPG generated digital library test called "program" actually programs
the flash device using formatted data. This formatted data source is
typically from an external IntglHex or Motorolag S-Record file.

IPG creates six OBP digital tests for each type of flash device

installed on a given board. These tests are used in combination to

develop atest suite for production on-board programming of flash
memory devices.

|

Generating Flash Digital Tests 6-2

Flash Programming Guide

6.1 Flash Test Development Tasks

Index

Flash test development involves a series of tasks. To develop flash
digital tests, perform the following tasks:

Add the appropriate enable commands to the board configuration
file. For example, to enable Flash70 features in your board
configuration file, add the statement "enabl e fl ash70" tothe
"config" filein the board directory.

For more information, see Section Two: Steps to Developing
Flash Digital Tests, on page 6-13.

1. Verify that theloca "board_defaults’ filelists your flash device
families under the FAMILY OPTIONS section.

* Locatethe"board defaults’ filein the directory:
"hp3070/standard/ "

» If your flash device families are not listed in the Family
Options section of the "board_defaults” file, modify the
file to include them. Enter the new flash family name in
the Family Options section of the standard
"board_defaults" file.

NOTE: The "board_defaults' file provides values for HP
Board Consultant to use in the "board" file when those
values are not supplied by data files or by data entry.

2. Verify that the LIBRARY OPTIONS section of the
"board_defaults" file contains the statement: "/hp3070/library/
supplemental/flash". Add the statement if it ismissing. Its
purpose is to point to the directory that contains the new
B.03.00 flash library tests.

3. Ensure that the device part number specified in the "board" file
matches the appropriate PDL file name found in the HP 3070
libraries. If they don't match, change the name appropriately.

Updated PDL files list flash digital tests in a format that
references the library directory path. This directory path points
to the name of the flash library device model, as shown in the
following example:

"/hp3070/library/supplemental/flash/am29f040_blank"

|

Generating Flash Digital Tests 6-3

Index

Flash Programming Guide

. Run HP IPG Test Consultant to generate tests.

. Modify the "testplan” file to include flash tests that residein "/

hp3070/boards/board_files_dir/digital".

For more information, see Step 4: Modifying the 'testplan’,
on page 6-21 .

. Verify that disabling is properly implemented in the IPG

created flash tests.

For more information, see Step 3: Running HP Test
Consultant, on page 6-17 .

. If you are using combinational testing ("enable combo" appears

in your config file) or Flash70 software, locate the digital
directory of your application and comment the homingloop
waitsin your VCL "program” and "verify" test. Also,
uncomment the hardware wait commands.

For more information, see Step 3: Running HP Test
Consultant, on page 6-17 .

. Rerun IPG Test Consultant to update tests with new disable

signas and hardware triggersin the fixture.

Generating Flash Digital Tests 6-4

|

Flash Programming Guide

6.2 Section One: Flash OBP Programming Steps

Flash
Programming
Step

id

In the HP 3070 in-circuit test environment, six steps can be
incorporated into the flash memory programming process. id, blank,
erase, verify, program, and crc. These flash programming steps have
aone-to-one correlation with the six IPG generated digital tests. With
the exception of erase and program, the other steps perform
validation procedures, which verify data on the flash device without
changing it. The blank programming step, for example, is used to
ensure that the flash device is blank after erasure.

NOTE Some manufacturers ship blank flash devices. However,

every flash device should be verified as blank before
programming. If the device is not erased compl etely, it
cannot be correctly programmed.

For a complete list of flash tests and descriptions of the logical
programming steps they perform, refer to Table | below:

Table | Fash Test Functions

IPG Generated Test

Check | D:

Fi | enane:
"devi ce nunber:id"
(e.g. ul:id)

Flash Library Model Function

This test uses enbedded al gorithns
to verify that the manufacturing
code on the flash devi ce matches the
expectation set up in the "board"
file. Run this test on flash devices
to ensure that the correct part is
installed on the board. This test is
typically used in connection testing
in the digital subroutine

erase

Erase Devi ce:
Fi | enane:

"devi ce nunber: erase"

(e.g. u8:erase)

This test uses enbedded al gorithns
to erase the nmenory spaces avail abl e
on the flash device. Wien erasure is
conpleted, all nenmory cells on the
devi ce should read as FF. (On some
early generation flash devices,
erased nenory cells on a bl ank
device read as zeros.)

If the part has not been erased,
correct progranmmi ng cannot occur.

Index

Generating Flash Digital Tests 6-5

|

Flash
Programming
Step

blank

Flash Programming Guide

Table | FHash Test Functions

IPG Generated Test

Flash Library Model Function

Verify Erase:

Fi | enane:
"devi ce nunber: bl ank"
(e.g. ull:blank)

Thi s test reads address | ocations on
the flash device to verify that they
have been erased correctly. Typi-
cally, this step is done before the
"progrant step to ensure the flash
device is blank and ready for
progranmi ng.

program

Program Devi ce:

Fi | enane:

"devi ce nunber: progrant

(e.g. u4:program

This test prograns the flash device
wi th hexadeci mal data provided by
Mot orol ag S-Records or Intelg Hexa-
decimal records. In addition, HP
3070 wutilizes any intelligent
device features such as enbedded

al gorithms which verify successful
progranmmi ng routines.

verify

Verify Program

"devi ce nunber:verify"
(e.g. ul2:verify)

This test verifies that programi ng
has been accurately conpl eted by
conparing the data cells of the

pr ogrammed devi ce to the data source
file used for progranm ng.

The verify routine is typically used
only in the debuggi ng process, and
is seldomused in production
testing.

cre

Verify Data with CRC:

"part nunber:crc”
(e.g. ulO:crc)

The Cyclical Redundancy Check
conpares the data on the device with
the data froma known good board. It
perforns the sane function as the
"bl ank" progranm ng step, except it
conpresses the known good data into
the "crc" object file. This test
perforns a CRC for each 2 channel
part in the data field.

Index

Figure6-1 Digital Flash Test File Description

Generating Flash Digital Tests 6-6

|

Flash Programming Guide

e.3Locating Flash PDL and Test Directories

HP 3070 systemsinclude standard flash PDL and VCL library
models. You can find the standard flash library modelsin the
following directories:

6.3.1/hp3070/libraries/supplemental/flash

The PDLs that appear in this directory are named after the flash
device part number with no extension. The device part number in the
"board" file reflects these names.

Examples:

ank9f 040
ank9sl| 800b
28F160
28F032
AT29¢c010

For flash programming, there are six library models referenced by
the flash specific PDLs. The file namesfor digital library models
begin with the part number of the flash device followed by an
underscore and the name of the flash function that the test performs.
For flash test descriptions, see Figure 6-1

Examples:

anR9f 040_i d
anR9f 040_er ase
anR9f 040_bl ank

28F160 id
28F160 _erase
28F160_bl ank

6.3.2/hp3070/boards/board_directoryldigital

Thisdirectory is empty until you have run IPG on your board (see
Chapter 7, “Validating Tests for Production”). After running IPG,

this directory becomes the target destination for digital flash tests
identified in the "board" file. IPG generates flash tests by utilizing
standard digital library models (e.g. "am29f040 _id", "28F160_id",
etc.). Unless instructed to generate tests selectively, IPG generates

|

Index Generating Flash Digital Tests 6-7

Flash Programming Guide

Six separate VCL tests for each flash device named in your "board"
file.

The filenamesfor the flash library tests are created by combining the
device name referenced in the "board" file and the flash function the
test performs, as defined by the device namein the PDL.

Examplesfor the "am29f040" flash device might look similar to the
following:

flash_Iibraryl an29f 040_pr ogram
flash_Iibraryl an29f 040_er ase
flAsh_Iibraryl an9f 040_bl ank

Devi ce name ("ull:"). Type of flash test
generated fromthe
library nodel referenced
in the "anR9f 040" PDL) .

<board_directory>/ digital/ull: progr amq—,

<board_directory> digital/ull:erase
<board_directory> digital/ull: bl ank

These tests will be modified to add disable statements, add hardware
walit pins or add nodesto control other flash devicesfor multiple chip
programming.

6.33 OBP Production Programming Task Flow

Flash70

Speed enhancements can be
achieved by using the Flash70
solutions presentedin Chapter 8,
“Series and Parallel
Programming.”

Index

The six library test models per flash device that I1PG placesin the
"digital/" directory are used at some point during test development.
The only required step for flash programming, however, is
"program” (and "erase” if the part isnot all ready blank). Often,
unneeded library test models are not executed in the production test
suite to save manufacturing time.

It isimportant to think about flash OBP programming tasks in two
distinct phases: test development and production. Thefirst phase, test
development, involves designing effective tests for your
manufacturing requirements; whereas the production phaseisused to
program flash parts and verify the datais correct during board test.

Once the test suite has been developed, production test strategies
attempt to reduce the manufacturing time it takes to complete the
programming during board test. Thisis usually accomplished by
excluding tests like "verify" from the production test suite. For
example, a CRC test could be substituted for "verify" in production.
CRC tests are much faster and can effectively verify flash program
accuracy, providing the test suite has been developed correctly. The

Generating Flash Digital Tests 6-8

|

Flash Programming Guide

check ID test that appearsin Figure 6-5, HP Board Consultant
Check List isuseful for ICT to ensure that the flash device installed
is the one that appears in the "board" file.Thistest is used in the
standard digital execution section to find manufacturing faults.

6.3.4 Flash Programming Test Flow

Start

!

Verify
Manufacturer 10

N Reject Device

Yes

v
Verify Blank

Device
Blank?

Erase Device

*Steps in blue boxes are
required for programming

Perform CRC
Check

N

Figure6-2 Flash Programming Flow Chart for Production

NOTE Toincorporate the CRC test as shown in Figure 6-2,

Flash Programming Flow Chart for Production, a
known-good board with programmed flash devicesis
needed. |deally, the known-good board flash devices
should be programmed by a mechanism other than the
"program" test to ensure reliable CRC verification.

|

Index Generating Flash Digital Tests 6-9

Flash Programming Guide

6.3.5Using HP 3070 Libraries to Develop Flash Tests

To develop tests for flash devices, you can utilize existing HP 3070
libraries. Flash70 software provides Part Description Library

(PDL's) models for programming the most common types of flash
memory. A Part Description Library model consists of a suite of
tests, each designed to perform a specific flash test function. You can
use these library models with the corresponding flash device types.
Or, you can easily adapt an existing library model to work with a
device not contained in the library. You can access these libraries in
the following directory:

/hp3070/library/supplemental/flash

6.3.6Part Description Library Structure

PDL

devices:
id

cre
blank
erase
verify
program

library sources

28f016_id

€28f016sv

Index

28f016_crc
28f016_blank
28f016 FOL
_erase
N da28f016sa
28f016 verify

A

28f016_program

N

Figure 6-3 Part Description Library Structure

The Part Description Library (PDL) has the name of the individual
device as it would appear in a bill of material. This name includes
the full device designation, for instane28f016sv. The PDL defines

the individual tests to be used for this device. Since the tests stay the
same for all versions of the same device type with only the pin out
changing, several PDLs would point to the same tests. This way,
different packages have different PDLs, but the same libraries. This
vastly improves the efficiency of library storage and maintenance.

|

Generating Flash Digital Tests 6-10

6.3.6.1 PDL’s Features

6.3.7 Library Structure

Flash Programming Guide

¢ Header defining the device including:

» Generic Name:device type used for libraries, i.e., 28f016
for al versions

Manufacturer: |C vendor

Packaging Type:tsop, ssop, €tc.

Safeguard Type:HP 3070 safeguard options

Family Type:Board file threshold requirement
Description:Data to be added to master list (see master
list)

Instructions:Information about utilization of flash

Part numbers identifying the libraries provided

Device names matching the test function, i.e. crc, id, etc.
"No safeguard" designation for all devices but one, to
minimize warning messages

* Pinassgnmentsto al librariesfor all pinsincluding NC
* "No Warranty" disclaimer

The libraries called by the part description library follow a standard
format. This standardization simplfiies the process of modifying,
implementing, and debugging library tests. Library tests are written
to be utilized by the HP 3070’s test generation software.

6.3.8 IPG, PDLs, and Flash Test Library Models

Index

HP 3070 Series 3 uses the same PDL and test file implementation as
earlier versions of HP 3070 software. However, PDL files are

applied to digital flash devices in a different way. With the new flash
library models, IPG Test Consultant now recognizes six digital "pin
library" subdevices within one flash part. Since each subdevice is
declared testable in the PDL file, flash device programming can be
done in-circuit, in the same manner as other device tests.

For example, to program a flash device, you should identify, erase,
and then program the appropriate hexadecimal data. The HP 3070

Generating Flash Digital Tests 6-11

Index

Flash Programming Guide

software generates atest for each pin library "subdevice" of the flash
device as shown in the Part Description Editor below:

tils Task

hn- Task Cumwmenl Taik: Diviss Dnbng

, = Each "pin |ibrary"
| - | subdevi ce |isted

[mpharsnbins *s: [Kafugmants be | [Rackrommt wo | [Tesnsbin: o is alsoa VCL
e el | St2ndard !ibrary

nmodel . The VCL
tests created for
t hese devi ces
program fl ash
parts.

Figure6-4 Library models as flash subdevices

The flash library models listed as subdevices in Figure 6-4, Library
models as flash subdevices are used to create digital flash testsin
the following manner:

1. IPG usesthe PDL file that shares the same name as the flash
deviceslisted in the "board" file as amodel for the flash OBP
digital tests, as shown in the example below:

pin library "crc", ns, pn"anR9f040_crc"

pin library "erase", ns, pn"anR9f040_erase"
pin library "blank", ns, pn"anR9f040_bl ank"
pin library "id", ns, pn"anR9f040_id"

pin library "progranm',ns, pn"an29f040_progrant
pin library "verify",ns, pn"anR9f040_verify"

Since each flash library model referenced by the PDL is
interpreted by IPG as a subdevice within the larger "am29f040"
part, the flash functions (identification, erase, program, etc.) are
executed when the test isrun on the in-circuit flash device.

2. IPG builds digital test libraries for each flash device named in
the "board" file.

For example, u11: erase iSthe digital test that erases the "U11"
instance of an "am29f040" flash device on your board. In addition to

Generating Flash Digital Tests 6-12

Flash Programming Guide

the erase test, IPG creates the following tests for the flash device
named "ull": | D Check, Verify Erase, Program Verify Program
and CRC Check.

6.4 Section Two: Steps to Developing Flash Digital Tests

Therest of this chapter outlinesthe steps you should take in using the
HP 3070 software tools to generate the flash programming test suite.
After completing test generation with PG, you need to verify that the
tests program the correct data onto flash devices. This procedureis
described in Chapter 7, “Validating Tests for Production.”

6.4.1Step 1. Configuring the board 'config’ file

Index

Before using Flash70 features on aboard, you must install the system
codeword for Flash70 and enable Flash70 in the board "config” file.
Enabling Flash70 activates HP 3070 software features that speed up
the programming mechanisms used in the digital executable tests.
Since Quick70 software and Control XT cards are required for
Flash70, these features must also be enabled in the board " config"
file. To enable Flash70, the following syntax must appear in the
board "config" file and one test library:

enabl e flash70.

NOTE If you wishto utilize the automated Flash70 featuresin

07 your test program, you must enable Flash70 in the board
"config" file. If you "enable flash70" in the test suite
and not in the board "config" file, IPG generates
warnings and places them in the OBP tests.

Generating Flash Digital Tests 6-13

|

Flash Programming Guide

6.4.2 Step 2: Verifying IPG Test Generation

For flash programming, HP Board Consultant is used primarily asa
verification tool. Key HP Board Consultant tasks include verifying
library paths, disabling methods, and that safeguards have been
turned off so flash devices can be programmed quickly and
efficiently. The primary tasks are shown in Figure 6-5:

Translate
CAD . Existing
Data . Board

View [Edit (laiBanrd | [Fsdsiit
Physical
: Board Data

Canerl

m Eeler Libeasy Pt

™ IHsplay Lardee Librasy Iralnachens
I Hapdey Part ey imirsc Bana
™ CEnpday Sadegiascd FIE Iradnaedong

Edit
est System

T Save Bedrd Fikes

™ Campie kiadiied Librarics

I Camplr baZFied Tafrguesd Micn
= Weriky Hirdreg |ibrsries

= Weribe DHumkde ety Bl

W ety Disable Fodes Usable

™ ‘ertke Thed Mades [hila

Figure6-5 HP Board Consultant Check List

To set up your board for flash OBP in HP Board Consultant,
compl ete these steps:

1. Load the board containing the flash devicesinto HP Board
Consultant.

Index Generating Flash Digital Tests 6-14

Flash Programming Guide

Load aboard and run HP Board Consultant by dragging the
folder containing the board files onto the "HP Board
Consultant” icon:

Drag and Drop Shortcut:

Figure6-6 Dragand Drop board load ’

2. If you have created digital flash library models for devices not
represented in HP 3070 , enter the directories that contain your
custom flash device library filesinto the Library Paths
formLibrary Paths Form.

The library paths are
searched in the order,
fromtop to bottom that
they appear in this
form

Figure6-7 Library Paths Test Form

Since the board compiler searches library directoriesin the
same order that they are listed in the Library Paths form, the
directories containing custom PDL s should be entered into the
list before the paths that contain the standard HP 3070 flash

Index Generating Flash Digital Tests 6-15

IMPORTANT

Index

Flash Programming Guide

device libraries. Set the flash device number to the appropriate
PDL name. Verify that library test options have been set
correctly for al the flash devices on your board.

Open the Device Entry formsfor your flash part subdevices.

Search Far:[Diesdes —

| e
S KpEpongt hieibead —

Cemarl:

To di splay the Device
Entry form
Click the "Show Data For

FHa
L —
N T

Devi ce" button or right- [Cor [Oa —
click the flash device | . =~ ———————
dra‘M‘ ng. Heplace Lovce 1 Uekdx Uewicr Claze

Figure6-8 Device Entry Form for aflash part
3. From the Device Entry form, do the following:

¢ Verify that the library test pointsto avalid PDL namein /
hp3070/library/supplemental /flash or your custom library
directory (see Figure 6-8, Device Entry Form for a flash
part).

¢ Confirm that the "Testability:" and "Library Test Expected:"
fields are set to "yes' for each device ..

If the board under test was not intended for on-board
programming, consult with the test design team to verify that tests
eliminate damage potential from excessive backdriving.

For information on design considerations for on-board programming, see
Chapter 2, “Design For On-board Programming.”

Generating Flash Digital Tests 6-16

|

Flash Programming Guide

4. After all the appropriate libraries and device options have been
set and verified, compile the tests.

Figure6-9 Final Compile of board files

NOTE For detailed information on creating board files and
part description libraries, see Test & Fixture
Development

6.4.3 Step 3: Running HP Test Consultant

IPG generates six VCL tests that correspond to the subdevices of the
flash partsinstalled on your board. After the tests have been
generated, you need to open at least one of the flash VCL test filesin
"digital/" to ensure that all requirements for OBP are included. To
verify that the newly created flash test suite isin working order, open
the "program” tests for each type of flash device installed.

Verification steps follow:

1. From the HP Test Consultant, select Edit "View/Edit Test
Files" "View/Edit Digital Tests"from the HP pulldown menus
as shown below:

I waial 1wl
|r_||. [[T R T T Pen— PRS-
] Edic Baard Filsa
T v lanaala Filas

- SEdie Baard Laeligeanion VimdEdas Tinniplan™ File
.;!u-.-'l:.ll.: Fianaras Filsa e Cdin Bagiiml Tmet

TS NNy Vimtbins Bigival Fumeiinnsl Bress
Tow rand |View'Edin Fackimss Files
" Hew i Wimed'Edan fawtes Filas
emner H¥im'Edin “whoein” File
de=zl Wimse'Edin “pira” Fila
& Bne nbeYim'Edan Bralog Tewin
eabar Wimee'Edun Froameed Hnalag Fesss

& lue vbal¥ip'Edis Bined Tewin
dn rllmarsg, cogsi; #r aressss
nanks.

This selection launches BTBasic and switches to the "digital /"
subdirectory of your board directory.

Index Generating Flash Digital Tests 6-17

Index

Flash Programming Guide

2. Load the test files for each flash device into the BTBasic

window as you normally would (e.g. enter "get u8:program" on
the BTBasic command line).

. Look for unexpected disabling warnings.

Six disabling warnings for every flash test installed on your
board will belisted in the tests.

Remember, the standard flash libraries are not what 1PG would
normally expect. They areonly logical flash programming steps
not "pin library" subdevices. Since these devices share the same
pin assignments, | PG reports that they must be disabled for
testing. In fact, they do not need to be disabled, and any
disabling warnings about the flash devices that share same
device name as your installed part can be ignored.

¢ How to search for important disabling warnings.

You can find disabling problems by searching for character
strings that begin with "!'1PG:" and reading through the device
names shown. Once the warnings are found, any device name
that does not belong to the flash device under test is suspect.

Since the IPG warnings are written to every test file for the
flash device, only one test file must be searched in this manner.
However, any disabling which the test developer determines to
be required must be added to each test in the suite.

Generating Flash Digital Tests 6-18

|

Flash Programming Guide

The process is shown in the BTBasic window below:

DIGITAL

Status:

digital
For u3:en
ud

st meres |y

=
-
-
-
Is
ls
Is
L
-4
-
-

digital
di le inFoFmation FaF udzsmddEd
Il information Faor Lam23FE

cormerd racall i swacutm DLE]
p lus

The devi ce nane
this part is "u52™
The expected flash
devi ce disabling

war ni ngs bel ong to : e ——t, - 1 ::j::::::
device "u9". The (iPE: Ls i —— 7 I T
"u52" disabli ng E L] digable information
war ni ng nmust be

resol ved for

successful flash cowwnand recal |

progranming to P lus

occur.

NOTE Hi ghl i ghing is added here for denpbnstration

pur poses, so manual searches of the disabling
! war ni ngs are necessary.

Figure6-10 Disabling warningsin BTBasic

4. Some devices can use hardware waits to speed up
programming. There will be commented instructions in the
library in these cases, uncomment the wait assign statements. If
you have purchased combinational testing (i.e. enable combo
appearsin your "config" file) or the Flash70 package, then
comment out the homingloop waitsin your VCL "program” and
"verify" tests and uncomment the wait assign statements.

Index Generating Flash Digital Tests 6-19

Flash Programming Guide

The assignment section should have the following syntax:

I ASSI GNVENT SECTI ON
wait |ine STS
wait term nated when STSis "1"

hom ng | oop 60000 times ! allow cell to program
execute Device_Ready exit if pass ! Program Conpl et ed
end hom ngl oop

I execute three_state wait

Modify by commenting out the homing loop:

I ASS| GNMVENT SECTI ON
wait |ine STS
wait term nated when STSis "1"

I homi ng | oop 60000 tines I allow cell to program
I execute Device_ Ready exit if pass ! Program Conpl et ed
I end homi ngl oop

execute three_state wait
NOTE You canimprove flash programming speed by

G approximately 15 percent by making the above
changes.

6.4.4 Power Voltage Considerations

Index

Often flash devices use special power levelsfor programming,
usually 12V isapplied to Vpp The Vpp pin on the device should be
supplied with a separate power supply. In the board file, this power
supply should be set to the standard V ¢ level of the board. The user
will modify the testplan power-up subroutine for flash programming.
The power up sequence should first bring the device to standard V ¢
levelsfor Vpp After this, the Vpp level may be set. Some devices
have been known to have programming failures if the power supply
is taken directly to the Vpp 12V level.

Programming voltage levels need to match the final operating
voltage of the board. Automatic algorithms make this necessary since
they validate the programmed voltage against the threshold dictated
by Vc. If the deviceis programmed at alower voltage level than it
will operate, the"1" and "0" states may be lower than required in
operation. To avoid this problem, use the voltage regulator on the
board to control the power supplied to the device during

Generating Flash Digital Tests 6-20

Flash Programming Guide

programming. If the V o levels are supplied directly, through an
edge connector node, the testplan should set V- to aleve at or
above the level supplied to the board in operation.

If your board file compiles properly with part description libraries
assigned for the flash devices, HP Test Consultant can be executed.
HP Test Consultant generates the flash programs automatically. The
correct tests will be placed throughout the board directory in the
appropriate locations. If you have modified the digital tests, rerun HP
Test Consultant so new wires will be added to the fixture "wirelist".

CautionAlways backup your tests before making any modifications.

A

6.4.5 Step 4: Modifying the 'testplan’

Index

The testplan generator (TPG), generates the "testplan” file. The
testplan is comprised of atestmain that controls the testing of the
board, and subroutines that contain the statements to execute the
devicetests:

Although the "testplan™ contains the flash subroutines necessary to
run the proper sequence of test steps, you must modify the "testplan”
dightly for flash programming. Theinstructions are described within
the BT-Basic "testmain” or "testplan above the sub Program_Flash.
Since instructions for this vary from part to part, you must read the
instructions provided in the "testplan” for more information on this
process.

Generating Flash Digital Tests 6-21

|

Flash Programming Guide

6.4.5.1 Modifying the "testplan” for Panel or Throughput Multiplier Topologies

Index

1. Copy the test statements for your flash devices from the
"Digital_Tests" subroutine to the "Program_Flash" subroutine.
Find the sampletest in the program flash subroutine and replace
it with the line from the IPG generated "testplan”.

The syntax under the "Digital_Tests" subroutine will look
similar to the following example:

Copy all test

st at enment s poi nting
to flash devices to
the appropriate

| ocation in the
test "digital/ul:crcs program fl ash

test "digital/ul:erase" subrouti ne.

Digital Tests
test "digital/ul:crc"
test "digital/ul: erase"

2. For flash devices needing a 12V power supply for
programming, add these two lines to the
"Setup Power_Supplies" section in the "testplan™:

set up_power _supplies
if flash _progrant = 1

then wait 2us !'*! cps ! raise voltage to 12 frominitia
setting after wait
el se

NOTE Thereisawait included to change the Vpp level from
0 7 5V to 12V as recommended by some manufacturers.

To modify the "testplan" for standard board topologies:

1. Enter the parameters for the device names by modifying the
"Device_New$" linesin the "testplan”.

Since ingtructions for this vary from part to part, you must read
the instructions provided in the "testplan" for more information
on this process.

2. If multiple devices are programmed, smply add a new
Device_New$ and call statement to the testplan.

3. For flash devices needing a 12V power supply for
programming, the power supply will be raised to 12v after al
power suppliesare first set to normal operating voltages and the
deviceisready for programming.

Generating Flash Digital Tests 6-22

Flash Programming Guide

set up_power _suppl i es
if flash _progrant = 1

then wait 2us !'*! cps ! raise voltage to 12 frominiti al
setting after wait
el se

NOTE Thereisawait included to change the Vpp level from
07 5V to 12V as recommended by some manufacturers.

4. In some programming cases, the power supplies need to be
changed from operating voltage to programming voltage.

After programming, however, power supplieswill bereset to
operating voltage.

6.4.5.2 Other "testplan” considerations

Some of the following board considerations must also be addressed
in the "testplan” and "testmain” file:

¢ The need to cycle power between digital test and flash to put
volatile FPGA back to three-state mode

¢ Power supply setup should have an additiona copy that
increases the V pp power supply

¢ Non-blank status resultsin erase of al parts on same write
out execution (rework boards reprogram) unless the user
modifies this operation.

¢ Makesurecluster isin board at onset if parallel programming
IS an option

|

Index Generating Flash Digital Tests 6-23

Flash Programming Guide

6.5 Section Three: Flash Tests and Existing Fixtures

Developing flash programming tests as shown in Section One:
Flash OBP Programming Steps, on page 6-5 utilizes the standard
flash features of B.03.00 software. If you have existing digital files
that you want to use for flash programming tests, you can add the
new flash features by modifying the "board", "testorder,” and
"wirelist" files. The modifications involved are minor and will not
require a new testplan.

NOTE Al ways backup your files before
maki ng nodi fications.

To achi eve optimal progranm ng
speeds, you nust set up your tests
wi th dynam c pin assignnments or use
FI ash70.

The digital test update procedure follows:
1. Back up your existing "board" directory.

2. Open HP Board Consultant. (e.g. Drag and drop the board
directory onto the HP Board Consultant icon (see Figure 6-6,
Drag and Drop board load)).

3. Add the path "/hp3070/supplemental/flash™" to the Library Path
Options section in the "board" file.

The Library Options section of the "board" file should look
similar to the following:

LI BRARY OPTI ONS

"/ var/ hp3070/1ibrary/suppl enrental /fl ash”

"/var/hp3070/library/ttl"

“/var/hp3070/library/lsi"

"/var/hp3070/1i brary/cnos"
Copy this line fromthe
"board_defaults" file into
your |ocal "board" file.

Generating Flash Digital Tests 6-24

Flash Programming Guide

¢ To changethelibrary pathsin the "board" file, use HP Board
Consultant to select the "View / Edit Library Data" flow chart
icon, and then click "Enter Library Paths"):

Uivrany Path.

T T e [oe

"/ hp3070/1ibrary/ suppl emental /fl ash"
should be listed before main library
paths and after customlibrary paths.

Figure6-11 New board_defaults Library Path form
4. Enter the appropriate flash Family Optionsin "board" file.

The easiest way to accomplish thisisto open the "/HP3070/
library/standard/board_defaults" file and copy the Family
Options flash family descriptions into your local "board" file.

The available flash Family Options are displayed below:

FAM LY OPTI ONS

FLASH 5V
Drive High 4;
Drive Low 0. 2;
Recei ve High 2.4,
Recei ve Low . 5;
Edge Speed 50;
Open | nput Default X
Load UP;

FLASH_3V3
Drive High 2.5;
Drive Low 0. 2;
Recei ve High 2.0;
Recei ve Low . 3;
Edge Speed 50;
Open | nput Default X
Load UP;

|

Index Generating Flash Digital Tests 6-25

Flash Programming Guide

FLASH 2V2
Drive Hi gh 2.0;
Drive Low 0. 2;
Recei ve Hi gh 1. 85;
Recei ve Low . 4;
Edge Speed 50;
Open | nput Default X
Load UP;

FLASH 3V3
Drive High 7;
Drive Low 2;
Recei ve High 1. 25;
Recei ve Low . 25;
Edge Speed 50;
Open | nput Default X
Load Up;

¢ After adding flash families to the "board" file in HP Board
Consultant, you can view the results by selecting the "View /
Edit Test System™ task flow icon, and then clicking "Enter
Family Options.":

Fils Tagks Complie Verdy Search Wersion Dydions
Tt Thew Mgl Wi
Ty |1_ni1-il'-
Cinll
sl

1
[t ;
o 11 Thatina -V inewscan; m

1 lmping Fai Orwice Dudinga: 4
Wepadn degaa T

™ [Fymer Poswr Masle s

I Erimer Frarill Rmile Dals

I Eneer Nosrd-Level DiaabinsCarsiitiarn
™ (i 1 Ghabal Dpriniia
TR

I Treer Maasrs Dpdons

I Eimer GF Bielisy Conacdlbais

Figure6-12 ECO flash family addition

Index Generating Flash Digital Tests 6-26

Flash Programming Guide

5. To retain the customization you’ve entered into your "testplan”
file, make sure that the "Testplan generation off" statement is
not commented out in the "testorder" file:

6. Make sure the flash tests listed in the "testorder" file are not
marked "permanent”, so that IPG will generate new digital tests
for your flash devices,

7. Change the part numbers in the "board" file to match the new
PDL libraries.

NOTE If you do not want to change the name of the PDL to
07 the device name seen in the board file, you can add the
new test suite to the boards custom library directory.

8. Run a comprehensive regeneration on the test suite iRG
Test Consultant.

This procedure is best done in incremental mode, so you can
deal with any unexpected problems as they arise.

9. Follow the instructions found with the sub program_flash in the
appropriate testmain found under "/hp3070/standard

|

Index Generating Flash Digital Tests 6-27

Flash Programming Guide

6.6 Set Up A Flash Test Suite to Validate Your Test

To set up your newly created flash test suite, see Chapter 7,
“Validating Tests for Production.”

|

Index Generating Flash Digital Tests 6-28

7~ HEWLETT® Chapter 7
/8 eacicanc Validating Tests for Production

Rev. A
IMPORTANT We recommend that you setup flash OBP test suites only after all
other board tests have been written and debugged. If problems
1 = occur in the other board tests, flash tests can be extremely difficult

to perform .

BEFORE YOU BEGIN
For best results, follow the procedures in this chapter. This will
save time in preparing the test suite for the production board test
environment.

Test devel opers can use the information in this chapter to implement
the setup process and troubleshoot failing tests.

This chapter requires an understanding of the following:

¢ Flash programming fundamentals. See Chapter 1,
“Introduction to Flash Programming.”

¢ Design considerations for on-board programming. See
Chapter 2, “Design For On-board Programming.”

¢ How to generate flash digital libraries for the board under
test. See Chapter 6, “Generating Flash Digital Tests.”

This chapter describes:

¢ The OBPflash device test suite task flow. See Task Flow for
Testing OBP Libraries, on page 7-2

¢ How to set up the OBPflash devicetest suite. See Using IPG
Generated Flash Tests to Setup OBP, on page 7-4

¢ Comparing the HP3070 B.3.00 programmed data with the

data on a known-good device. See Verifying that
Programmed Data is Correct, on page 7-21

|

Index Validating Tests for Production 7-1

71 0verview

Flash Programming Guide

The setup process for flash on-board programming is used to validate
tests before they go to production. Setup involves executing a series
of teststo validate that programmed data matches the data results
expected from the user defined data source. These tests help to
determine if the HP 3070 programming mechanism works with the
datathat board designers have provided to tests devel opers.

Setting up flash programming tests is easy because the HP 3070
provides standard libraries for the most common flash devices. These
libraries require minimal debugging. However, it is often necessary
to modify existing test files to accommodate variancesin board
design. This chapter discusses the flash programming test flow used
to validate tests for production. It also addresses potential problems
you might experience and some common causes for OBP test failure.

7.1 Task Flow for Testing OBP Libraries

IMPORTANT

g P

Index

Board designers should provide test developers with a known good
board that contains pre-programmed flash devices. HP 3070 flash
tests enable test developers to view the actual data of a known-good
flash device before starting on-board programming. If the flash tests
need to be modified, knowledge of what the data should look like is
invaluable. If the board designers do not provide pre-loaded flash
devices, OBP test setup can still be accomplished, but the processis
more difficult to implement.

Asdescribed in “Locating Flash PDL and Test Directories,” the
HP 3070 flash software provides PDLs and library models that
enable flash on-board programming (see Table IFlash Test
Functions for library descriptions.) There are six library models for
each flash device installed on your board. |PG uses these library
modelsto generate atest suite that consists of six files. These tests
are used to verify that the flash devices installed on your board can
be correctly programmed with the data provided. If there are flash
devices that do not have standard libraries, the OBP setup procedure
can also be used to debug custom libraries.

Setting up flash test libraries for in-circuit OBP is dependent on
upstream board devices functioning properly. Therefore, itis
important to debug all other board tests before setting up flash
OBP test suites.

Validating Tests for Production 7-2

Flash Programming Guide

7.1.1 Setup Process Task Flow

Setup Process

for pre-programmed flash Setup Process
pre-p g_ for blank flash devices
devices
Verify "id" test Verify "id" test

device_number: id device_number: id

Verify "blank" test Verify "blank" test
device_number: blank

device_number: blank

v v

Learn CRC . "
L) Verify "erase" test
learn on; test’device_ number: j
N - device_number: erase
crc’; learn off

v v

Verify "verify" test
device_number: verify

Verify "program" test
device_number: program

v x

Verify "erase" test
device_number: erase

Verify "verify" test
device_number: verify

v v

PR " Learn CRC
Ve_”fy blank" test learn on; test 'device_number: crc’;
device_number: blank

learn off
Verify "program" test Verify "crc" test

device_number: program device_number: crc

C Production) C Production)

Figure 7-1 Flash OBP Setup Process Using a Known Good Board

Index I>

Validating Tests for Production 7-3

Flash Programming Guide

72Using IPG Generated Flash Tests to Setup OBP

IMPORTANT

:u.j¢ H

Index

When boards are delivered with pre-programmed flash
devices, a programming mechanism other than the
"program" test should be used on the known good board
flash devices. This practice provides the means to compare
your programming results with known-good data. This is the
best way to ensure reliable OBP test suites.

When boards are delivered with blank flash devices, its
essential that the HP 3070 programming process can be
verified by a method other than the flash test libraries. Using
an alternative verification mechanism is the best way to
ensure that the "program" test has programmed expected
data. A functional test, for example, can be run to verify that
the board works with the newly programmed parts.

Since flash OBP uses digital test libraries to program devices, you
use the HP 3070 "debug" program to set up the flash test
suite.Whether you use HP Pushbutton Debug or BT-Basic
commands, the implementation process is the same. Flash tests that
pass in debug, however, do not necessarily mean that the deviceis
being programmed with correct data. 1t isimportant to keep in mind
that flash OBP uses digital library "tests" to actually program the
device.

The ’id’ test, on page 7-5 and The ’program’ test, on page 7-15
sections of this chapter explain how to usethe six flash teststo set-up
and, if necessary, debug a problematic test suite. The following
sections are presented in the order that test developers would
normally follow for setting up pre-programmed on-board flash
devices.

Validating Tests for Production 7-4

|

Flash Programming Guide

721 The 'id’ test

The identification test establishes that the correct deviceisinstalled
and that the pin inter-connects on the board are working. The test
reads the manufacturer code and device identification number from
the memory chip. If the device utilizes CFl standards, the test might
also verify additional register contacts that more fully test pin states
for interconnect verification. Run the"id" test first in OBP test suites.
If thetest fails, it islikely that the part installed is not the one the test
expected to read.

Possible causes for "id" test failure follow:

¢ Theinstaled flash deviceis different than the device for
which the flash test suite was devel oped.

¢ Pinassignments do not match datasheet specificationsfor the
device.

If this occurs, verify that the pin name matches the pin
number shown in the data sheet.

¢ Upstream devices have not been disabled.

Important | PG disable warnings can be buried inside the test

file because flash device tests can't disable themselves. For
more information, se6tep 3: Running HP Test

Consultant, on page 6-17.

¢ Vpp and Vcc voltage levels have been incorrectly set for
flash devices in the testplan.

¢ Thresholds are not correct for the device signal lines.

\oltage levels for flash devices must be defined in the board
defaults file. An example of voltage specifications for a flash
family follows:

fam |y FLASH
Drive High 4;
Drive Low 0. 2;
Recei ve Hi gh 2. 4;
Receive Low .5
Edge Speed 50;
Open I nput Default X;
LoadUP

|

Index Validating Tests for Production 7-5

722 The 'blank’ test

Index

| DN:id |

—

Flash Programming Guide

¢ Timing variationsin vector cycles, bus cycles, and offsets,
making it impossible for the "id" test to read the device.

Debug the ID test by comparing the graphic representation of
control linesto the data sheet for the part.

The blank test can be used to verify that a device contains pre-
programmed data. The "blank" test verifies that every bytein the
deviceis set to FF hexadecimal. Flash devices can only be
programmed by changing bits from"1" to "0". After you have
verified that the flash devices you want to program are installed
correctly and the timing variations are set correctly, verify the device
databy performing a"blank" test on the device. Use the flash library
"blank” test.

The "blank” test isthe smplest test in the flash OPB test suite,
because it has no command structure. The test ssimply reads data
from the device. Theusua purpose of the "blank" test isto verify
that aflash device has been erased properly by the "erase” test. On
pre-programmed parts, however, the "blank” test can reveal potentia
problems with bus cycles. Understanding these problemsis
necessary during program development.

¢ For pre-programmed flash devices on a known good board,
the "blank™ test should show fail. If the test passes, then the
board designers have provided a known good board with
blank flash devices.

After verifiying that the device is blank, proceed with the
next step in the setup process. See Task Flow for Testing
OBP Libraries, on page 7-2.

¢ When used on pre-programmed flash devices, the "blank™ test
should demonstrate the flash device can be read, and appears
to be programmed.

¢ The blank test should show the expected data contents of a
pre-programmed device when used in Pushbutton Debug. If
the data matches the expected source data, the digital
"program" test is working properly. If the data doesn’t

match, some debugging may be required to correct control

line problems.

SeeThe 'id’ test, on page 7-5 .

Validating Tests for Production 7-6

Flash Programming Guide

7.2.2.1 Evaluating Device Data With Pushbutton Debug

The "blank™ test is useful for many purposes when verifying
operation of the "program" and "erase" tests. After verifying that the
device isreadable, you can evaluate data by utilizing "blank™ test for
pre-programmed devices. This can be useful when other testsin the
suite fail.

To evauate the programmed data with the "blank” test, you can use
the display feature of "Pushbutton Debug." To display accurate
addresses for the data, the pins displayed must be divisible by 4.
This procedure enables you to read the data that is programmed on
the memory device and then compare it to the data sheet.

Drag and Drop Shortcut:

File fulerizd Tiew

Figure 7-2 Drag and drop test initialization
The steps to display correct data addresses are described below:
1. Load the known good board.
To load a board, start BT-Basic, and then run Pushbutton Debug.

Drag thefolder containing board files onto the Pushbutton Debug
icon.

Index Validating Tests for Production 7-7

Flash Programming Guide

2. After loading the board, do the following:

* Setthe HP 3070 up for powered tests. Enter "powered” in
the BT-Basic window.

e Since Flash tests aretime intensive if the safeguard
featureis used, you must inhibit safeguards. To inhibit
safeguards,. enter "safeguard none" in the BTBasic
window.

» If you use oscillator disables such as gprelays, run the
portion of the "testplan” file that includes the power
supplies, and any oscillator controls. An example
follows:

unpower ed

gpconnect 20654 to 20665

gpconnect 21856 to 21869

wait 20 Fl ash tests need
pover ed g to be power ed.

3. After the board isloaded into Debug and compiled, run the
"blank" test. Enter "execute to fail" in the BT-Basic window.

4. Openthe"Digital Debug Graphical Waveform™ window and set
the display to hexadecimal. Enter "display hex" in the BT-Basic
window.

5. Display the data bus and address bus in hexadecimal format in
one of the following ways:

¢ If the quantity of pinson your memory device addressis
divisible by 4, open the display groups. Enter "display groups
DATABUS ADDRESS BUS' in the BTBasic window.

¢ If the quantity of address pins on your memory device is not
divisble by 4, display datafirst. Then add or remove
additional pins until the total number of pins showing are
divisible by 4.

Use Pushbutton Debug to pad the hexadecimal address
display with extracontrol lines, or to create adisplay groupin
the test file that eliminates the high-order address pins. A
description of these procedures follows.

|

Index Validating Tests for Production 7-8

Flash Programming Guide

7.2.2.2 Displaying Accurate Addresses by Adding Extra Control Lines

¢ Add as many control lines as necessary to display the data
bus in multiples of four. For example, if you have an 18
address pin device, 2 extra control lines are needed to display
the addresses correctly.

In the diagram below, one extra control line is needed:

HF Fusibbanton Delasg

Figure 7-3 Padding the Hexadecimal Display with a Single Pin Control
Line

The CE_BAR display group above has been assigned to a

chip enable pin. Since the flash device’s chip enable has a
constant value of 0, it is an especially good control line to add
to the data bus display as you will se@ining the

Hexadecimal Display to View Address Bus and Control

Lines, on page 7-10.

¢ After the appropriate number of control lines have been
added to the waveform graphic display, renumber the display,

|

Index Validating Tests for Production 7-9

Flash Programming Guide

and then view it again in hexadecimal format. The result
should look similar to the following:

The const ant
CE_BAR val ue of 0 nmakes the address easy to read

Figure 7-4 Using the Hexadecimal Display to View Address Bus and
Control Lines

The numbering of the address pins (0-3, 4-7, 8-11, 12-15)
indicate the address bus is divided properly.

7.2.2.3 Displaying Accurate Addresses With the New Display Group

A better way to display addressesin 4 bit increments for data
comparison is to change the "blank” test. Thisiseasily done by
copying the pin assignments of the address bus and leaving off
the high-order pins. For example, if you have 19 pin device, you
can create a new address group that only displaysthefirst 16 pins
as shown below:

assign Address_bus to pins 1, 30, 2
assign Address_bus to pins 3, 29, 28, 4, 25, 23, 26, 27

assign Address_bus to pins 5, 6, 7, 8, 9, 10, 11, 12 Cofyy T Il 15 EC e

original group to the

assign Address_john to pins 3, 29, 28, 4, 25, 23, 26, 2 EY El e € Ereny

assign Address_john to pins 5, 6, 7, 8, 9, 10, 11, 12

Index Validating Tests for Production 7-10

Index

Flash Programming Guide

And then add the new display group to the display section of the
test asfollows:

i nputs Address_bus, CE_bar, OE bar, WE_bar, Address_j ohn

After you have added the appropriate lines to the "blank™ test,
display the new control group after the data bus.

Figure 7-5 The Hexadecimal Display for a Truncated Address Bus

6. When the address bus display matches the data bus, compare
the data at key addresses with the data sheet.

For example, to verify that the datais correct on the AMD part
"AM?29SL 800B," display vector 4 to verify that it reads "555AA"
for Word programming or "AAAAA" for Byte programming. If
the data matches the data sheet command definitions, it islikely
that the device is working properly and the other testsin the OBP
suite should work as expected.

Validating Tests for Production 7-11

7.23The ‘crc’ test

IMPORTANT

Index

Flash Programming Guide

The"crc" test behaves like the "blank” test with a

compression statement. It reads the data on the
flash device in order to generate an algorithmic
| DN.belank number based on the dataresiding on the chip. It

then compares the result to the known-good

cyclical redundancy check test. You can use the

"crc" test in several ways. One of which follows:
If you are following the pre-programmed setup described in Using
the Hexadecimal Display to View Address Bus and Control
Lines, on page 7-10, the next step isto learn the CRC on aknown

good board and then store the CRC object file in a safe place. This
file will be used to verify the programming step.

| DN:id |

After running “The 'id’ test” and “The 'blank’ test” on apre-
programmed flash device, you have verified that the flash device
installed on your known good board is the correct part and that the
programmed data can be read and seems accurate based on the data
sheet. Once these assumptions have been tested, learn the CRC.

To learn the CRC, enter "learn on; test 'u2:crc’; learn off" inthe
BT-Basic window. Then verify that the newly learned CRC works
again on the known good board.

The"crc" check should pass. If it fails:

¢ Check for timing differences in receive delays between the
"blank" test and the "crc" test.

¢ Check for offset differences between the "blank" test and the
"crc" test.

It is extremely important to obtain a known good board
programmed by a method other than the HP 3070 ATE. If the
board has been programmed and debugged successfully by some
other means, then the "crc" test should pass. If it fails, the problem
islikely to be with the ATE connections, voltage levels, or some
other situation specific to the ATE environment.

» After the cyclica redundancy check number has been
compressed and stored, the verification procedure for
testing in setup and in the production test environment is
much faster.

Validating Tests for Production 7-12

7.2.4The 'verify’ test

Index

| DN:id |

J

| DN:blank |

J

| Lean CRC |

—

Flash Programming Guide

The "verify" test compares the data on-chip directly with the data
source file used by the "program" test to program the device. This
test should not be used for production environments becauseiit is
time consuming. It should not be dependent on the "crc" test for
program verification because the "verify" test uses the same data
access mechanisms as the "program” test.

The "verify" test should be used on aknown good board that has
been programmed by mechanisms other than the HP 3070 ATE.
Since the flash device has been programmed correctly, the "verify"
test works as expected. because the data definitions are correct. If the
test fails, the following problems may exist:

¢ Thedataisapplied to the wrong data pins. For example, the
high byte is switched with the low byte.

¢ The data source doesn’t match the pre-programmed data.

¢ Control line offsets are not correct.

¢ Loads are not set properly.

¢ Threshold levels are incorrect.
If this is the case, it is likely that the Flash Family power
levels have been set incorrectly in the "verify" test. Compare
the actual power levels to the levels specified in the data sheet
to determine the correct threshold settings.

¢ All devices have not been disabled.
If this is the case, run a working "blank” test on the device
with pull-down loads. The test should pass. If not, upstream
devices are driving the databus.

¢ The device type is not correct.
If you are following the pre-programmed setup process

described irfThe 'id’ test” , then this problem should have
been discovered by the "id" test.

Validating Tests for Production 7-13

Flash Programming Guide

725 The 'erase’ test

The "erase" test uses the flash device’s automated erase algorithms to
fully erase the memory device. Partial erasure is not typically done

in the development phase of OBP setup. Problems with this test are
not likely, especially if you have performed the "id", "blank", and
[DN:id | "verify" tests successfully on the pre-programmed device. After the
J test passes, the device should read only FFs. You can verify this by
| DNrj:'ank | executing the "blank" test.
| LeamfRC | If the "erase" test fails, possible problems follow:
| O | ¢ On Intely devices, the erase algorithms return an activity
E— complete response, and then a Full Status Check procedureis
performed to verify whether the erase operation succeeded or

falled. For example, a28F200BX part uses the following
algorithm to check for read failures:

(Status Register Data)

@ VppRange Error)
@ Byte Program Error)

CByte Program)

Figure7-6 Intelg Full Status Check Procedure

If the register read failure occursin the Full Status Check,
then the device might require special programming voltages.
In this case, ensure that the power supply voltages are set
correctly on the testhead.

¢ If everything seems to be set correctly and the test till fails,
ensure that upstream devices have been disabled.

Index Validating Tests for Production 7-14

Flash Programming Guide

7.2.6 Verifying an Erased Device With the 'blank’ test

7.2.7 The ’program’ test

Index

| DN:id |

J

| DN:blank |

J

[teancrc |

J

l DN:verify

J

| DN:erase |

—

| DN:id |

J

| DN:blank

J

| Learn CRC

v

| DN:verify |

J

| DN:erase |

J

| DN:blank |

DN:program

The "blank” test verifies flash device erasure. If the "erase” test
passes, at this point, you will verify that the "blank” test is
successfully reading the blank device. Execute the "blank™ test to
verify its operation.

Flash70

The "program™ test does not take advantage of extra Flash70 features
unless the Flash70 algorithm is enabled in the board config file.

See Step 1: Configuring the board 'config’ file, on page
6-13.

After you have verified that all testsin your flash OBP test suite are
working, verify that the "program" test will write the correct data
onto the flash device.

Since the purpose of this setup is to determine if the programming
mechanism works with the data the board designers have provided,
you need only to program a portion of the data onto the memory
device. For thisreason, the debug version of the "program” test
programs the device without segments.

The verification process for the "program” test follows:

1. Ensurethat the programming data source has been copied to the
local "digital/" directory because the data source will be called
by the test.

2. To verify that the "program” test works properly, run the
"program" test for the flash device under test from aBT-Basic
window. For example, enter test " u2:program” to run the test
that programs the digital device named, "u2", in the board file.

3. If the "program” test passes, then verify that the data has been
entered accurately. Display the data content in Pushbutton
Debug, and compare it to the expected data. Or, run the “The
‘blank’ test” .

Validating Tests for Production 7-15

Flash Programming Guide

For details on data verification techniques, read Verifying that
Programmed Data is Correct, on page 7-21.

4. If the "program" test fails, determine the cause.

7.2.7.1 Troubleshooting a Failing "program" Test

If the abreviated "program" test fails, there are several possible
causes. Look for the same type of errorsthat occur on standard
digital tests. The "program"” tests can fail for the following reasons:

¢ Thelibrary vector cycle time may be too fast for the fixture
and board.

» If using Flash70, don't set the receive delay longer than
100n or the dynamic vector timing will expand
unnecessarily.

» Signasare not reaching the device. Use verify nodes to
verify access.

* Anautomatic feature of the new compiler may not
operate properly. Use "generate flash inhibit" statements
to remove suspects one at atime. Then execute the
"program” test in BT-BASIC to quickly observe any
improvement.

¢ Vppisnot set at correct levels.

NOTE Thisfailure can be seen in Intel g devices by monitoring
0 7 the Status Register. One of the pinswill revea the Vpp
failure.

¢ Control line offsets are not set correctly.

¢ Threshold levels areincorrectly set in the Flash Family
section of the "program" test.

¢ There are devices that have not been disabled upstream.

¢ Thedevicetypeis not correct.

Index Validating Tests for Production 7-16

Flash Programming Guide

7.2.7.2 Expanding the Test to the Full Memory Size of the Device

Index

When the test is working as expected, the repeat |0op size may be
expanded to program the full memory size of the device. Usually the
size of the repeat loop is commented within the test. It is not
necessary to adjust the repeat loop to the exact size of the datato be
programmed, as the featuresthat perform automatic FF stripping and
extra segment removal will minimize the test appropriately. Simply
expand the test to the full repeat size and uncomment the " segment”
and "end segment” statements. After compilation, execute thetest to
ensureit will program the entire device properly.

If the test passes, evaluate the datawith the "crc” test, if thereis
already alearned "crc" from a known good board. If the test passes,
but there is no known good board, use the "verify" test to verify the
dataagainst the datafile. Remember that the "verify" test should use
the same data structure as the "program” test. Examine the data
carefully using the "blank™ test in the debug mode to check that the
beginning, the end, and other address locations in the device are
properly programmed.

If the device programs correctly, until the last data location of the
devicefails, you may need to add the end of data instructions to the
test. For example, most devices will not respond as expected if a
second write is attempted to a previously programmed data location.
This problem arises when the test runs out of data before completion
of the test. The default action is to apply FF at the highest address
location for the remainder of the repeats. If the highest order address
is aready programmed, this action will result in afailure since the
location cannot be programmed to FF. To use alocation that has not
been programmed, use the end of data command "reuse” to
reprogram alocation containing FF or "unused"” to program a
location not defined in the datafile. For each of these actions the
system selects the address to be programmed. In some cases, these
addresses might a so interfere with data programmed prior to this
program operation. Possibly, serial numbers that have been loaded
by another test could be the source of interference. In this case, you
can select a specific address to be programmed with FF. Thisisthe
"user" end of data option.

One good tool for validating the "program” test isa 55, AA, 55 data
source. Thisdata source may be used as the source file. Then the
blank check can be modified to verify alternating AA and 55. Since
it checks every location, and is easy to use with debug, failing
address locations can easily be identified. A contributed utility,
genSrec, can be used to generate any size s-record with avariety of

Validating Tests for Production 7-17

Flash Programming Guide

data contents. Some of these files are aso found in the " contrib"
directory. To determine the content of a user file, the contributed
tool, flashDump, can be used. This parses the datafile asthe
compiler would. Along with the PDL generation tool, these
contributed files are quite useful.

If the tests operate properly, the user has an opportunity to improve
the operation of the test speed. First determine the true operating
speed of the test by using a construct similar to the following in the
BT-BASIC command line:

A=msec | test 'u3:program’ | print (msec -A)/1000; seconds

Notice that the test will take severa runsto achieve full operation
Speed.

Changing the vector cycle time and adding hardware waits may
improve the speed of the program, . Hardware waits can be used on
newer flash devices that have separate output pins to indicate a busy
state. Hardware waits may only be used if functional, combo, or
flash70 testing is available on the system. If the device and system
meets these criteria, try adding a hardware wait to the digital test.
This doesrequire a specia "trigger" resource in the fixture.

The vector cycle may be increased up to 80n if the fixture and the
device will operate at this speed. If flash70 isavailable, itis
important to keep the receive delay 100n seconds or less for most
efficient generation of the expanded dynamic vectors. Try to
decrease the vector cycle. If intermittent failures occur, return to the
standard vector cycle.

7.2.8 Obtaining Speed Improvements with Flash70

Index

You can obtain the greatest speed improvement for flash tests by
using Flash70 software. With Flash70, the new dynamic vectors
utilize hybrid card and Control X T card resources more efficiently
and larger segment sizes can be used.

To optimize test speed, try multiplying the standard library segment
sizeby 16. If thetest will not compile, reduce the segment sizein
half. Continue this process until the test compiles. Thisresultsin the
most efficient execution of the test. Because of the automatic FF
stripping and segment removal features, there is no need to modify
repeat |oop size. Use the standard library repeat |oops, so the test will
automatically program only the actual data contained in the datafile.
Using a standard segment size limits the number of trials needed to

Validating Tests for Production 7-18

Flash Programming Guide

find the best segment number. You should not attempt to make minor
adjustmentsin repeat |oop and segment size. Time improvements
will be minimal and the risk of error high.

729 Notes about Debug with Dynamic Vectors

Do not use debug on fully expanded tests, unless absolutely
necessary. However, if it is necessary to evaluate afailure high in
data memory, thereis new listing features available. The compiler
list option now generates the starting and ending vector for each
segment. The compiler pads the end of the debugable version of the
test with extra NOP or P vectorsto avoid confusing displays at the
end of segments. These extravectors are not included in the compiler
list information.

In the rare case when segmented tests require debugging, the
graphicsdisplay may not always be accurate. The vector content will
be as expected, but the count will be off by a number of vectors and
the source code will not track properly. It iseasier to find a

recogni zabl e address and data and count from that known point to
evaluate the problem.

7.2.10 Notes About Debugging With Flash70.

Index

If errors are encountered with the "program™ test, debugging may be
required. Generally, itiseasier and most effective to debug non-
segmented tests. The multiple vectors that make up the expanded
dynamic vector can readily be seen in debug. The order of the vector
build up is determined by the order of the drive statementsin the
execution statement. The control lines however will always be
asserted in the last vector.

Validating Tests for Production 7-19

Flash Programming Guide

Start 2397

VCycle SHn

o—

11}

=Jd L
o

m M@ @ M @

1
1

alat F F bk H55522a5555111111

Figure 7-7 Debug Display of aFlash70 Test

The two diagrams show anormal test and aflash70 test. Observethe
4 vectors that make up the dynamic vector on the flash70 test. First
the high order address pins change, second the lower 9 address pins
change, followed by the high order data, and finally the low order
data and control lines (not shown).

_n

CE_BARCA
_BUSC15]
“BUS

M o— —
o= - L

[=]
[=]
[=]
[=]
[=]

E55a3a3a5551111

Figure 7-8 Debug Display of a Standard Flash Test

Index Validating Tests for Production 7-20

Flash Programming Guide

Debug can be a useful tool for Flash70 tests, if you are aware of
some anomolies. The debugger was developed for standard digital
tests. With the special timing of the dynamic vectors, modifications
to timing within debug are of limited value. If the vector cycleis
changed, al vectors, including those making up the dynamic vector
will be changed. Some of the timing within the dynamic vector will
adjust to an indeterminate state. If the timing is changed, the only
way to return to the origina state is by updating the debug session.
Modifications of timing do have some limited value, but they need to
be followed up by direct modifications and recompilation of the
original test. If debug modifications of the vector cycle or receive
delay result in aworking test, there are two possibilities. Perhapsthe
vector cycle of the ordinary vectors is too short or perhaps the
dynamic vectors do not create avalid datacycle. Try modifying the
vector cyclein the test and recompiling. Re-executethe test. If the
test continues to fail, try turning off the dynamic vectors. Recompile
and execute. This process may help you find the cause of the failure.

The new flash compiler has many useful features. However, not all
of these features are supported in debug. For example, when debug
is attempted within a segmented test and the test runs out of data, it
will use the end of data setting to program until a segment is
completed. Any unnecessary segments are not executed in the BT-
BASIC execution statement. However, in the debugger, all segments
are executed even when no datais available. Do not expect
segmented tests to stop segment execution once the end of datais
reached. All other aspects of the test execute as expected. The end of
dataaddress continues to be executed until all repeats are compl eted.
When the test is working properly, recompile the final test without
the debug option. Thisresultsin the fastest possible test. For
instance, Throughput Multiplier tests will not operate in parallel
when compiled in debug

7.2.10.1 Verifying that Programmed Data is Correct

Index

After all thetestsin the OBP test suite have passed, you might think
the datais programmed correctly on theflash device. Usually, thisis
the case. There are instances, however, when the OBP test suites
work properly but the data is still programmed incorrectly. For this
reason, it is best to conduct a more extensive validation of the
programmed data manually after the " program” test has passed. This
is particularly important on 16-bit data bus devices or multiple
device topologies.

If the test setup process for pre-programmed flash devices outlined in
this chapter have been followed, you know the tests seem to work

Validating Tests for Production 7-21

Flash Programming Guide

correctly. Therefore, data application from the file should also be
correct. Use aknown good board to quickly validate this
assumption. The procedure is shown below.

1. Usethe"blank" test in Pushbutton Debug to read the datafor
the device on the KGB as described in Displaying Accurate
Addresses With the New Display Group, on page 7-10.

2. Replace the board with aboard programmed via"program™ and
display the data again. This requires execution of the testplan to
return to a powered up state, but the hexadecimal display will
be retained.

3. Compare the data programmed with the "program™ test to the
known-good result.

¢ |Ifthedataisidentical, the OBP test suite has been set up
correctly and isready for production.

¢ If thedataisnot the same and the individua testsin the OBP
test suite have passed, there are afew likely scenarios.

* The data bits have been reversed (see Correcting
Reversed Data Bits, on page 7-22).

* Addresslocations are skipped. Use the step procedure to
correct this problem.

7.2.10.2 Correcting Reversed Data Bits

In the case of a 16-bit data bus, high order and low order data bits are
often reversed. Thisis dueto thelittle Endian vs. big Endian use of
standard Motorolag S-records or Intel ghex records. This happens
because the data source records do not define the most significant
byte orientation of data. You can remedy the problem by doing the
following:

Problem: Datals Reversed:

Addr ess 0000 Data 1100 0011
3322 | Should Be === 2233
5544 4455

Solution: Assign high order bitsto low order:

Exi sting assign statenent:
assign Data_bus to pins 16, 15, 14, 13, 12, 11, 10, 9

|

Index Validating Tests for Production 7-22

Flash Programming Guide

assign Data_bus to pins 8, 7, 6, 5, 4, 3,
8 7, 6, 5 4, 3

2, 1
assign Data_cnd to pins 2

, 1

Only the high order and
Change to: | ow order data bus pins

assign Data_bus to pins 8, 7, 6, 5 4, 3, 2, 1 <——— ale€ SWitChefj' UiE
assign Data_bus to pins 16, 15, 14, 13, 12, 11, 10, § — commnd assignment

assign Data_cnd to pins 8, 7, 6, 5, 4, 3, 2, 1 « continues to drive on
the | ow byte.

Modifying the pin assignmentsin the "program" test as shown above
sets your test up to match the intention of the board designer.

7.2.10.3 Address Misalignment.

Another situation resulting from a 16-bit data busis address
misalignment. Thisis documented in the B.02.50 on-line users
documentation. To correct these errors, use the "step” command and
create dummy address pins.

|

Index Validating Tests for Production 7-23

Flash Programming Guide

7.2.10.4 Data Addressing for Data Records Larger Than 8 bits

Dataistypically provided in 8 bit addressing formats. Recently,
however, board designers have provided some test developers with
Motorolag S-Record and Intelg Hex Record formats that use other
than 8 bit data addressing. Thisvarianceis not part of the formal
specification for either record type and resultsin incorrect data
programming if the varianceis not specified in the appropriate flash
testsin the OBP test suite.

Theerror in programming occurs, because the standard interpretation
for reading data records assigns one address per 8 bit data chunk. If,
for example, the data file contains 16 bit addressing, then each 16-bit
chunk of datawould be incorrectly assigned one address. This
standard interpretation results in records being mapped on top of

each other, when reading 16 bit records.

An example of this situation follows:

8 bit addressing

: 20200000A08BO0BC2AAE110028 AEF00029AE000F05AE800046BD80BFF9006990690C631 FC9
: 2020200080BF70006990690C588080BF60006990690C58807DAEO0007D0C5B807 DAES8O000AC
: 20204000B00C5A807DAED9007D0C6380898B00BC21AE010004AE000042BE7 DAEBD277D0OFEQ
. 202060008AAE000026AE1000075EE807075DA80000B9639064906A9000B100B9CABEFF7F6C
: 2020800080A780BF000060B11FBBA09009BF0001CABEFFO3A09009BF0008CABEFFF7A09059
: 2020A00000BF60006990690C588080BFFFFF07BB3CBES8OBF1F12C0BF0080108809BF001083

16 bit addressing

: 202000008AA080A0BC2AAE110028 AEFO0029AE000205AE800046BD80BFF9006990690F6380
:20201000B9008B8E8B06990690C588080BF60006990690C58807DAEO0007DOC5B807DAESO00
1 202020007A80205807DAED9007D0C6380898B00BC21AE010004AE000042BE7 DAEBD277DOFE
:2020300090808B0026AE1000075EE807075DA80000B9639064906A9000B100B9CABEFF7F6C
: 20204000BFBOFFBF000060B11FBBA09009BF0001CABEFFO3A09009BF0008C4ABEFFF7A09059
:21????F020518F9FF990690C588080BFFFFFO?BBSCBESOBFlF12CDBF00801088098F001083

Notice that the 16 bit addresses
increments by 10. Since 20 bytes of
data per line are progranmed, every
other line of data is overwitten if
the "16 bit" data nodifier switch is
not added to the file command.

Figure 7-9 8hbit versus 16 bit addressing

Index Validating Tests for Production 7-24

Flash Programming Guide

The HP 3070 software compensates for the variance in addressing
schemes by allowing test developers to specify which addressing
scheme their data records use. In the example above, adding the data
modifier "16 bit" to the"file" statement in the "program" test for your
flash device fixes the addressing problem.

NOTE Since this addressing variance is not standard for these

ISR formats, VCL cannot accurately determine whether the
datarecordsare 8 or 16 bits. You can supply the correct
information to the software by using data modifiers.

7.2.10.5 Addressing Data Modifiers

IMPORTANT

Index

The file statement within a VCL data block must be modified to
alow specification of how many bits will be allocated per address.
The modification will be made to the data specification of the file
statement. Examplesfor 8, 16 and 32 bit interpretations of a
Motorola S-record file are shown below.

file "data" 131072 S-record data
file "data" 131072 S-record data 16 bit
file "data" 131072 S-record data 32 bit

Note that the default and the 8-bit areidenticadl:

file "data" 131072 S-record data
file "data" 131072 S-record data 8 bit

The use of the data modifier will change how the system interprets
the addresses in the Motorola S-Record or Intel Hex Record. A 16-
bit modifier specifies that the address will be incremented once per
16 bits rather than once per 8 bits before other modifiers such asthe
step trandlation be applied.

Keep in mind that the "8 bit", 16 bit" and "32 bit" modifiers are
NOT specifying the width of the data bus of the device being
programmed. The modifiers specify the format used in the
Motorolag S-Record or Intelg Hex Record datafiles only.

Validating Tests for Production 7-25

Flash Programming Guide

|

Index Validating Tests for Production 7-26

ﬁ HEWLETT®] Chapter 8
[/ paciarc Series and Parallel Programming

Rev. A

There are several topologies that can be used to improve your flash
programming speed. Some common topologies and programming
strategies are described in this chapter.

This chapter requires an understanding of the following:

¢ Flash programming fundamentals. See Chapter 1,
“Introduction to Flash Programming.”

¢ What makes aboard DFOBP compliant. See Chapter 2,
“Design For On-board Programming.”

¢ How to generate flash digital libraries for the board under
test. See Chapter 5, “VCL Syntax for Flash OBP.”

¢ How to setup flash OBP test suite for production. See
Chapter 6, “Generating Flash Digital Tests.”

This chapter describes:

¢ Flash series programming in cluster tests. See Series Flash
Topology Cluster Test Programming Model, on page 8-2

¢ Fash parallel programming in cluster tests. See Parallel
Topology Cluster Test Programming Model, on page 8-5

Index Series and Parallel Programming 8-1

Flash Programming Guide

8.1 Series Flash Topology Cluster Test Programming Model

Index

Although you can use two tests to program two devices on the same
bus sequentially, it is easy to program two or more devices with one
test. Thistest strategy sends all the programming commands to both
devices at the same time. The dynamic vectors, which give each
device the appropriate data, select one device. Thefirst deviceto
receive the programming datawill be the first device to be polled if
data polling is required. For best results, both source files should
contain contiguous address locations. Thisway, only one addressis
required for programming both devices.

The procedures for performing serial programming for aflash culster
topology follow:

1. Select one of the working program tests in the digital
subdirectory to be the multi-device programming test.

2. Add the nodes that apply only to the other device(s) to the
assign statements. Most of the pinswill have common nodesin
this topology, so you should not need to add many.

assign CE bar to pins 10 I< original test
assi gn CE _bar_u9 tonodes “U9_READ”

input CE_bar, CE_bar_u9
3. Add the node to each vector that sets that pin type

a .Set it to the same value for every vector, except for the
dynamic host vector. For this, keep the original vector
intact.

b. Duplicate the vector for the new device.
In some cases, the standard tests keep CE asserted at all times. For
these tests, you may need to make minor changes. For example, prior

to the dynamic vector, you may need to add a new End_cycle full
statement to take the CE_bar high for both devices.

Series and Parallel Programming 8-2

Index

Flash Programming Guide

The following example shows how to change the dynamic vector.

Original vector:

vector Data W

initialize to Keep_Control
drive Data_bus
set VE_bar to "0O"
set Dat a_bus to "0000"
end vector

New vectors:

vector Data_Wu8

initialize to Keep_Control
drive Data_bus
set CE_bar to "0" I <<< added set statenent
set WE_bar to "0"

set Dat a_bus to "0000"
end vector

vector Data_Wu9

initialize to Keep_Control

drive Data_bus

set CE bar_u9 to "0" !<<< added set statenent
set WE_bar to "0"

set Dat a_bus to "0000"
end vector

The wait or homingloop vector requires similar treatment. The
homingloop for data contents requires separate vectors. For the wait
or homingloop on devices with ready pins, both devices can be
activated with one vector.

A new data block isrequired to reference the datafile for "u9". If
contiguous address data files are in use, only one data block is
required for the address, since both files have full addressing. Using
contiguous addressing results in faster test speed. Thisexample
below this scenario. Since in this topology, the buses are the same,
groups Data_bus are used in both data blocks.

Series and Parallel Programming 8-3

Index

Flash Programming Guide

Original data blocks:

data Data to groups Dat a_bus
file "2MW8.data" 1048576 s record data
end data

data Address to groups Addr ess_bus
file "2M8.data" 1048576 s record address
end data

Add one new data block:

data Data_u9 to groups Dat a_bus
file "2M8.data u9" 1048576 s record data
end data

The execution statements should remain the same, since they have
been enhanced to add selectsfor the new device or devices. Theonly
changes should be as follows:

execute End_Cycle

execute End_Cycle_full | take CE high for both parts

execute Data_Wu8 drive data Address drive data Data
execute End_Cycle_full

execute Data_Wu9 drive data Data_u9 ! wite to second device

execute End_Cycle_full

wai t 4u

hom ngl oop 60000 times
execute XSR Ready exit if pass
execute Three_state

end hom ngl oop

hom ngl oop 60000 tines ! wait for second device
execute XSR Ready_u9 exit if pass
execute Three_state

end homi ngl oop

next Address Ipoint to next address for both
next Data I'point to next data for u8
next Data_u9 I'point to next data for u9

After the repeat |oop, add a separate read status register to ensure
each chip has valid programming.

Series and Parallel Programming 8-4

Flash Programming Guide

s.2 Parallel Topology Cluster Test Programming Model

The HP 3070 can provide any width of data for dynamic vectors.
This means, if identical device typesreside in parallel on one bus, as
in Figure 2.3.3.2, they can al be programmed with one test. The test
time required to program all four devicesis equivalent to thetime it
would take to program one device. The decision to use a parallel
programming model must be made prior to program devel opment
because this model utilizes many more resources than asingle test
would. Adopting this model can yield significant improvementsin
programming time.

Thistest model creates a cluster test that expandsthe library to the
full width of the data bus. The test sends the same commandsto each
device, but sends different datato each device based on the data
block assignments.

8.2.1 Performing a Parallel Test

Index

Create anew PDL with all the uniquely noded pins of the flash
devicesincluded.

1. Create appropriate setup tests with definition sections as
described below, for the PDL.

2. Inthe board file, add anew device that contains enough pinsto
contain al the independently noded pins. For example, u8_ull.
Thisis easy to do by copying parts of one device into the new
device.

3. In Board Consultant, save the board with the "Board File List
Format" set to "Device" in the Global Options Form. This
creates a board file with device references only, so you can
easily copy parts of thefour existing devicesto the new devices,
u8_ull. With these additions, you can proceed with board
development. You can make changes to the test while the
fixture is being built.

4. Modify the test as described below.
Definition Section:
a. Add the required data buses for the additional devices.

b. Add any control lines that are not on common nodes on the
board.

Series and Parallel Programming 8-5

Flash Programming Guide

. Assign "dynamic" to any new data buses.

d. If you'll be using different data files for each device, the
data bus and data block will need to be assigned
independently.

If you have a single data file containing, in this case 64 bits of
data to be distributed to the devices, you'll use a single data bus
assignment and data block. Careful analysis of the data
structure is required to make this determination. Each case
cannot be described here, so this is an exercise for an
experienced user.

8.2.2Add New Data Blocks to Reference Separate Files for Each
Device

data Data u8 to groups Dat a_bus_u8
file "2MW8.data" 1048576 s record data
end data

data Address to groups Addr ess_bus
file "2M8.data" 1048576 s record address
end data

Add new data blocks for each new bus:

data Data_ull to groups Data_bus_ull
file "2M8.data_u9" 1048576 s record data
end data
data Data_ to groups Dat a_bus_ul0
file "2M8.data ulO0" 1048576 s record data
end data
data Data to groups Dat a_bus_ul0
file "2MW8.data_ull" 1048576 s record data
end data

Index Series and Parallel Programming 8-6

Index

Flash Programming Guide

Vector Section:

Modify each vector by adding the additional data bus with matching
data content to the original vector.

NOTE

Be sure to include the assertion of the control lines.

Original vector:

vect or

Dat a_FF

initialize
drive Data_bus

set
set

WE_bar
Dat a_bus

end vector

to Keep_Control

to
to

to Ke

"o

FFFF"

ep_Control

drive Data_bus_u8, Data_bus_u9, Data_bus_ulO, Data_bus_ull

New vector:

vector Data FF
initialize

set WE_bar

VEE pi ns
set Dat a_bus_u8
set Dat a_bus_u9
set Dat a_bus_ulO
set Data_bus_ull

end vector

to "

to
to
to
to

0000" <<< WE_bar is assigned to all

" FFFF"
" FFFF"
" FFFF"
" FFFF"

Series and Parallel Programming 8-7

Flash Programming Guide

After correcting the vectors, additions to the executable section should be minimal. Change the
dynamic vector to drive all buses.

The new executabl e section should look like this:

segnment 2048
repeat 1048576 tines
execute Setup_Program Cnd I data = 40
I'leach command drives the correct data to all 4 devices.

execute End_Cycl e
execute Data Wdrive data Address drive data Data u8

drive data Data u9 drive data Data ulO drive data

Data_ull

execute End_Cycle

wait 4u
hom ngl oop 60000 tines
Il The XSR vector has been modified to look for each device
execute XSR Ready exit if pass
execute Three_state
end honi ngl oop

next Address Ipoint to next address for any device
next Data_u8 Ipoint to next data word
next Data_u9 Ifor each data bl ock
ADVICE next Data_ul0 !and each device
O
G&/

next Data_ull
end repeat
end segnent

Hardware waits can be used if there are less than three conditional pinsin the cluster, since three
hardware trigger resources are available for asingle digital test.

This genera example should help you to generate thistest. If you created the setup tests prior to
board development, you will have plenty of time to develop the test because the resources are
contained in the fixture file.

You can use the standard libraries for production until you've validated the new tests.

Index Series and Parallel Programming 8-8

Flash Programming Guide

Index Series and Parallel Programming 8-9

Flash Programming Guide

Index Series and Parallel Programming 8-10

D

HEWLETT®
PACKARD

Appendix A

Online Guide to Acronyms for Flash OBP

Online Acronyms

blank Any flash device that has been erased. It is also the suffix of the test library that confirms all
memory cells of aflash deviceread FF. See Table | on page 6-5.

ATE Automatic Test Equipment validates PCB construction by seeking assembly faults, open traces,
shorted traces, misaligned devices, and missing integrated circuits (ICs). Design engineersuse ATE
to perform in-circuit testing on assembled printed circuit boards (PCBs). The HP 3070 ATE can be
used to program your flash devicesin-circuit.

BSDL Boundary Scan Description Language. Asused in thisdocument, BSDL implies devicesthat follow
the IEEE STD. 1149.1 conformance document.

CFI Common Flash Interface. Thisisthe flash standard the industry is moving towards.

JTAG Under Construction.

DUT Device Under Test.

CUI Thisisthe Command User Interface embedded a gorithm that is written on the first 2 bits of the
flash memory boot record. The CUI controls the writing of data onto the flash device by toggling
CE# and OE# pins as appropriate.

OE # Output Enable control line on aflash device.

CE# Chip Enable control line on a flash device.

WE # Write Enable control line on aflash device.

CRC The suffix of the test library that performs a Cyclical Redundancy Check on aflash device and then
comparesit to alearned result. See Table | on page 6-5.

erase The suffix of the test library that erases flash devicesto prepare them for programming. See Table
| on page 6-5.

FPGA Field Programmable Array.

IC Integrated Circuit

ICT In-circuit Test

id The suffix of the test library that uses embedded algorithms to identify a flash device. See Table |
on page 6-5.

PG Integrated Program Generator subroutine that isinvoked in BTBasic or Test Consultant.

Index Appendix A 1

|

Flash Programming Guide

Online Acronyms

IPGTC Integrated Program Generator Test Consultant subroutine that compilestest files into executable
objects.

JT Just In Time manufacturing.

KGB Known Good Board.

Mb Megabit (1,048,576 hits).

MB Megabyte (1,048,576 bytes).

OoBP On-board Programming

PCB Printed Circuit Board.

PDL PDL is alanguage used to describe devices. 1n some HP 3070 manuals, PDL represents both Parts
Description Language and Part Description Library. In the Flash Online Guide, the PDL acronym
is used when describing the file that points to the flash programming tests such as
"am29f040_program".

program The suffix of the test library that programs flash devices with formatted hex data. See Table | on
page 6-5.

SOP Small Outline Packages.

™ Under Construction.

Vee Programming voltage required to implement flash.

VCL Vector Control Language.

verify The suffix of the test library that compares data on a flash device with aformatted datafile. See
Table | on page 6-5.

Vpp Programming voltage required to implement flash.

Index Appendix A 2

|

Index

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Symbols

"flash" statement 5-5

.Description of Declaration Statements 5-5
/hp3070/boards/board_directory/digital 6-7
/hp3070/libraries/supplemental /flash 6-7

Numerics

12Mhz on 6Mhz cards 3-7
20661
Heading 1.1.1.1.1
2.2.2.2.3 One large databus to a cluster of
smaller devices 2-11

A

A series of flash devices connected to asingle
data bus 2-10

Advantages and Limitations of On-board Pro-
gramming 1-13

AMD® Algorithms 1-9

AMD® Erase Algorithmi1-12

AMD® Programming Algorithmi-10

AMD® Programming algorithm flow chant10

Automatic Segment Removab

B

block
datas-11
Board Design Recommendationg
Board Topologies for On-board Programming
9

C

Creating a Sample Design Documenp

D

data blocks-11

formatted (s or hex) recordsl9
Data Blockss-11
Data Blocks and OBR-2, 4-16
Data Interpretation-2

Flash Programming Guide

Data Record-6, 4-11
Data sources and board topologies effect @BP
8
"data” statement
VCL 4-16
Declaration section-2
Description of Definition Statementss
Description of Flash VCL Execution Statements
5-10
Device Erasure-4
Device Identification.-4
Device Programming-4
digital test
basic tasks-2
Disable bi-directional signals to prevent bus
conflicts2-4
Disable input signals to prevent backdriving
damage-4
Document operational Vcc or use in-system
power supply levelg-5
"drive data" keyword
vector executions-17

E

Each flash device connected by a separate data
bus2-9

Embedded Flash Programming Algorithms
Embedded Programming Algorithms

Intel Automated Byte/Word Programming Al-

gorithm1-5

Intel® Algorithms1-5
emergency shutdown switch
"end data" statement

VCL 4-16
End Recordi-6, 4-11
End Record Type Exampless
Establish direct access to BSDL signats
example

data blocks-16

data records (multi-bytel)-20

data records (single-byte)19
Example Declaration Section for a Flash Eest
Example Definition Section of a Flash Test
Extended Linear Address Recard?2
Extended Segment Address Recomd
Extended Segment Record Examplet

Index-1 I>

ABCDEFGHIJKLMNOPQRSTUVWXY/Z

F

Faster Tests with the Flash70 Algorithm 3-4
"file" statement
VCL 4-17, 4-21
File Statement Options 5-14
Flash 1-2
Flash devices on separate data busses 2-11
flash memory
programming tasks 1-4
device erasure 1-4
device identification 1-4
device programming 1-4
flash memory programming concepts 1-3
Flash Programming Concepts 1-3
Flash Programming Task Flow 1-4
Flash RAM
added value in manufacturing 1-2
definition 1-2
in electronics manufacturing 1-2
Flash Test Development Tasks 6-3
Flash VCL Statementsin the Definition Section
of aTest 5-6
Flash VCL Statementsin the Execution Section
of aTest 5-8
Flash70 3-3
formatted records
hex 4-19
S4-19
Full Status Check 1-7

H

Hardware Waits 3-10
hex formatted records 4-19
HP 3070 B.3.00 File Structure 6-7

lIntel® Full Status Check Algorithm-7

Intel Full Status Check Algorithm7

Intel Hex Format-19

Intel Hex Record Example12

Intel Hex Record Formait9

Intel® Algorithms1-5

Intel® Automated Byte/Word Programming Al-

<l Flash Programming Guide

gorithm1-5
Intel® Block Erase Algorithm-8
Intel® Block Erase algorithm flow charts
IPG, PDLs, and Flash Test Library Models1

M

Motorola S-Record Example7

Motorola S-Records-4, 4-19

Multiple flash devices connected to one large
data bu-11

N

"next" statement
VCL 4-18

O

OBP
A Different Approach to Test Development
2
OBP on multiple chip and single data bus topol-
ogy 2-10
OBP Production Programming Task Flew
On Board Programming 2
On-board Programming
advantages and limitations bfi3
On-board programming
advantages af-13
limitations of1-15
On-board Programming and Flash RAM
On-board Programming Design Considerations
2-3

P

Placing Flash VCL Statements in a Test

Planning for Flash On-board Programmiang

Provide access to all I/0 signals

Provide data protection and disabling informa-
tion 2-6

R

"receive data" keyword

Index-2 I>

ABCDEFGHIJKLMNOPQRSTUVWXYZ

vector execution 4-17
Record Types 4-5, 4-10
"rewind" statement

VCL 4-18

S

sformatted records 4-19
Section One

Flash OBP Programming Steps 6-5
Section Two

Steps to Developing Flash Digital Tests 6-13
shutting down the testhead in an emergency 2
Start Linear Address Record 4-12
Start Record 4-5
Start Segment Address Record 4-11
Sep 1

Configuring the board 'config’ file-13
Step 2

Verifying IPG Test Generatiog14
Step 3

Running HP Test Consulta6itl7
Structure of a Motorola S-Reco#eB
Syntax to Inhibit Flash70 Algorithm 13

T

testhead
emergency shutdown

Testing multibyte Devices with Data Records
20

Testing Single-Byte Devices with Data Records
4-19

The1-2

The AMD® Embedded Erase Algorithmai2

The AMD® Embedded Program Algorithoe

The Flash70 Algorithms-4

The Series 3 Flash Compilep

The Structure of a VCL Test2

Timing sectiors-2

Turning off All Flash Features13

Turning off Data Removal-14

Turning off Limited Addressing-13

Turning off Segment Removal13

Turning off the Flash70 Algorithre-13

<l Flash Programming Guide

U

Using HP Throughput Multiplier for parallel
flash programming-12

V

"values" statement
VCL 4-16
VCL Statements in the Declaration Section of a
Tests-3
VCL Syntax in Flash Digital Tests2
Vector Definition sectiors-3
Vector Execution sectioh3

W

What is a Flash Digital Tes#21
What is a flash programming test?
What Test Developers Need to Knows

Index-3 I>

ABCDEFGHIJKLMNOPQRSTUVWXY/Z

<l Flash Programming Guide Index-4 I>

	Flash Programming Guide
	Introduction to Flash Programming
	1.1 Flash RAM and On-board Programming
	1.2 Flash Programming Concepts
	1.3 Flash Programming Tasks
	1.4 Embedded Programming Algorithms for Flash Devices
	1.4.1 Intel® Algorithms
	1.4.2 Intel® Automated Byte/Word Programming Algorithm
	1.4.2.1 Intel® Byte/Word Programming Flowchart

	1.4.3 Intel® Block Erase Algorithm

	1.5 AMD® Algorithms
	1.5.1 The AMD® Embedded Program Algorithm
	1.5.2 The AMD® Embedded Erase Algorithm

	1.6 The Advantages and Limitations of On-board Programming
	1.6.1 The Advantages of On-board Programming
	1.6.2 Limitations of On-board Programming:

	Design for On-board Programming
	2.1 On Board Programming
	2.1.1 OBP: A Different Approach to Test Development

	2.2 Planning for Flash On-board Programming
	2.2.1 On-board Programming Design Considerations
	2.2.2 Board Design Recommendations
	2.2.2.1 Disable Bi-directional Signals to Prevent Bus Conflicts
	2.2.2.2 Disable Input Signals to Prevent Backdriving Damage
	2.2.2.3 Provide Access to All I/O Signals
	2.2.2.4 Use System Power Supply Levels and Document Operational Vcc
	2.2.2.5 Establish Direct Access to BSDL Signals
	2.2.2.6 Provide Data Protection and Disabling Information

	2.3 What Test Developers Need to Know
	2.3.1 What is a Flash Programming Test?
	2.3.2 Data Sources and Board Topologies Effect OBP
	2.3.3 Board Topologies for On-board Programming
	2.3.3.1 Individual Flash Devices Connected by Separate Data Busses
	2.3.3.2 A Series of Flash Devices Connected to a Single Data Bus
	2.3.3.3 Multiple Flash Devices Connected to a Single Large Data Bus
	2.3.3.4 Parallel Flash Programming With HP Throughput Multiplier

	2.3.4 Creating a Sample Design Document

	Flash70 Digital Tests
	3.1 What is a Flash Digital Test?
	3.2 The Series 3 Flash Compiler
	3.2.1 Data Interpretation
	3.2.2 Automatic Segment Removal

	3.3 Flash70
	3.3.1 The Flash70 Algorithm
	3.3.2 Faster Tests with the Flash70 Algorithm
	3.3.3 Obtaining 12MHz Speed on 6MHz cards
	3.3.4 Hardware Waits

	3.4 Data Blocks

	Data Sources for Flash Programming
	4.1 Overview
	4.2 Data Blocks and OBP
	4.2.1 Using Data Blocks for Flash Programming
	4.2.2 Data Block Example Using a Motorola S-record
	4.2.3 Data Block Example Using an Intel Hexademical Record

	4.3 Formatted Records
	4.4 Motorola S-Records
	4.4.1 Record Types
	4.4.1.1 Start Record
	4.4.1.2 Data Record
	4.4.1.3 End Record

	4.4.2 Motorola S-Record Example
	4.4.3 Structure of a Motorola S-Record

	4.5 Intel Hexadecimal Records
	4.5.1 Record Types
	4.5.1.1 Data Record
	4.5.1.2 End Record
	4.5.1.3 Extended Segment Address Record
	4.5.1.4 Start Segment Address Record
	4.5.1.5 Extended Linear Address Record
	4.5.1.6 Start Linear Address Record
	4.5.1.7 Intel Hex Record Example
	4.5.1.8 Extended Segment Record Example

	4.6 General Data Block Usage
	3.4.1 Testing Single-Byte Devices with Data Records
	3.4.2 Testing multibyte Devices with Data Records

	VCL Syntax for Flash On-board Programming
	5.1 Overview
	5.2 VCL Syntax in Flash Digital Tests
	5.3 The Structure of a VCL Test
	5.3.1 Declaration section
	5.3.2 Timing section
	5.3.3 Vector Definition section
	5.3.4 Vector Execution section

	5.4 Placing Flash VCL Statements in a Test
	5.4.1 VCL Statements in the Declaration Section of a Test
	5.4.1.1 Example Declaration Section for a Flash Test
	5.4.1.2 .Description of Declaration Statements
	5.4.1.2.1 flash
	5.4.1.2.2 generate static test
	5.4.1.2.3 family
	5.4.1.2.4 dynamic

	5.4.2 Flash VCL Statements in the Definition Section of a Test
	5.4.2.1 Example Definition Section of a Flash Test
	5.4.2.2 Description of Definition Statements
	5.4.2.2.1 file
	5.4.2.2.2 file statement option

	5.4.3 Flash VCL Statements in the Execution Section of a Test
	5.4.3.1 Description of Flash VCL Execution Statements
	5.4.3.1.1 segment
	5.4.3.1.2 repeat
	5.4.3.1.3 execute and drive
	5.4.3.1.4 next

	5.5 Syntax to Inhibit Flash70 Algorithm
	5.5.1 Turning off the Flash70 Algorithm
	5.5.2 Turning off All Flash Features
	5.5.3 Turning off Limited Addressing
	5.5.4 Turning off Segment Removal
	5.5.5 Turning off Data Removal

	5.6 File Statement Options
	5.6.1 Default
	5.6.2 "reuse" Data Modifier
	5.6.3 "unused" Data Modifier
	5.6.4 "user" Data Modifier

	5.7 28f160 "u8:program" VCL Example

	Generating Flash Digital Tests
	6.1 Overview
	6.1 Flash Test Development Tasks
	6.2 Section One: Flash OBP Programming Steps
	6.3 Locating Flash PDL and Test Directories
	6.3.1 /hp3070/libraries/supplemental/flash
	6.3.2 /hp3070/boards/board_directory/digital
	6.3.3 OBP Production Programming Task Flow
	6.3.4 Flash Programming Test Flow
	6.3.5 Using HP 3070 Libraries to Develop Flash Tests
	6.3.6 Part Description Library Structure
	6.3.6.1 PDL’s Features

	6.3.7 Library Structure
	6.3.8 IPG, PDLs, and Flash Test Library Models

	6.4 Section Two: Steps to Developing Flash Digital Tests
	6.4.1 Step 1: Configuring the board ’config’ file
	6.4.2 Step 2: Verifying IPG Test Generation
	6.4.3 Step 3: Running HP Test Consultant
	6.4.4 Power Voltage Considerations
	6.4.5 Step 4: Modifying the ’testplan’
	6.4.5.1 Modifying the "testplan" for Panel or Throughput Multiplier Topologies
	6.4.5.2 Other "testplan" considerations

	6.5 Section Three: Flash Tests and Existing Fixtures
	6.6 Set Up A Flash Test Suite to Validate Your Test

	Validating Test for Production
	7.1 Overview
	7.1 Task Flow for Testing OBP Libraries
	7.1.1 Setup Process Task Flow

	7.2 Using IPG Generated Flash Tests to Setup OBP
	7.2.1 The ’id’ test
	7.2.2 The ’blank’ test
	7.2.2.1 Evaluating Device Data With Pushbutton Debug
	7.2.2.2 Displaying Accurate Addresses by Adding Extra Control Lines
	7.2.2.3 Displaying Accurate Addresses With the New Display Group

	7.2.3 The ’crc’ test
	7.2.4 The ’verify’ test
	7.2.5 The ’erase’ test
	7.2.6 Verifying an Erased Device With the ’blank’ test
	7.2.7 The ’program’ test
	7.2.7.1 Troubleshooting a Failing "program" Test
	7.2.7.2 Expanding the Test to the Full Memory Size of the Device

	7.2.8 Obtaining Speed Improvements with Flash70
	7.2.9 Notes about Debug with Dynamic Vectors
	7.2.10 Notes About Debugging With Flash70.
	7.2.10.1 Verifying that Programmed Data is Correct
	7.2.10.2 Correcting Reversed Data Bits
	7.2.10.3 Address Misalignment.
	7.2.10.4 Data Addressing for Data Records Larger Than 8 bits
	7.2.10.5 Addressing Data Modifiers

	Series and Parallel Programming
	8.1 Series Flash Topology Cluster Test Programming Model
	8.2 Parallel Topology Cluster Test Programming Model
	8.2.1 Performing a Parallel Test
	8.2.2 Add New Data Blocks to Reference Separate Files for Each Device

	Online Guide to Acronyms for Flash OBP

